{"title":"改进的Coffin-Manson中功率LED线键合可靠性模型","authors":"Bin Zhang, G. Tao","doi":"10.1109/IPFA.2014.6898199","DOIUrl":null,"url":null,"abstract":"Thermal shock is usually used for LED wire-bonding accelerated life testing, and the failure is commonly treated as a low-cycle fatigue problem. The lifetime analyses which base on the Coffin-Manson model never consider the modulus saltation of silicone enclosure with the temperature changing. With an extensive DOE, an improved Coffin-Manson model is proposed, which also copes with the glass transition of silicone encapsolent. With this improved model, a more accurate prediction of wire-bonding reliability can be made.","PeriodicalId":409316,"journal":{"name":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An improved Coffin-Manson model for mid-power LED wire-bonding reliability\",\"authors\":\"Bin Zhang, G. Tao\",\"doi\":\"10.1109/IPFA.2014.6898199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal shock is usually used for LED wire-bonding accelerated life testing, and the failure is commonly treated as a low-cycle fatigue problem. The lifetime analyses which base on the Coffin-Manson model never consider the modulus saltation of silicone enclosure with the temperature changing. With an extensive DOE, an improved Coffin-Manson model is proposed, which also copes with the glass transition of silicone encapsolent. With this improved model, a more accurate prediction of wire-bonding reliability can be made.\",\"PeriodicalId\":409316,\"journal\":{\"name\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2014.6898199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2014.6898199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An improved Coffin-Manson model for mid-power LED wire-bonding reliability
Thermal shock is usually used for LED wire-bonding accelerated life testing, and the failure is commonly treated as a low-cycle fatigue problem. The lifetime analyses which base on the Coffin-Manson model never consider the modulus saltation of silicone enclosure with the temperature changing. With an extensive DOE, an improved Coffin-Manson model is proposed, which also copes with the glass transition of silicone encapsolent. With this improved model, a more accurate prediction of wire-bonding reliability can be made.