基于迁移学习的半导体制造虚拟计量模型更新研究

Rebecca Clain, Ikram Azzizi, Valeria Borodin, A. Roussy
{"title":"基于迁移学习的半导体制造虚拟计量模型更新研究","authors":"Rebecca Clain, Ikram Azzizi, Valeria Borodin, A. Roussy","doi":"10.1109/asmc54647.2022.9792514","DOIUrl":null,"url":null,"abstract":"Manufacturing processes are often subject to drifts over production cycles. This study applies the paradigm of Transfer Learning (TL) to support the updating of a Virtual Metrology (VM) model based on a Convolutional Neural Network (CNN). The VM is applied to a Chemical Mechanical Planarization (CMP) to predict the average material removal rate. Through the prism of a benchmark case study, this paper empirically investigates how transfer learning can improve the updatability of a VM CNN-based model.","PeriodicalId":436890,"journal":{"name":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1706 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Updating a Virtual Metrology Model in Semiconductor Manufacturing via Transfer Learning\",\"authors\":\"Rebecca Clain, Ikram Azzizi, Valeria Borodin, A. Roussy\",\"doi\":\"10.1109/asmc54647.2022.9792514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manufacturing processes are often subject to drifts over production cycles. This study applies the paradigm of Transfer Learning (TL) to support the updating of a Virtual Metrology (VM) model based on a Convolutional Neural Network (CNN). The VM is applied to a Chemical Mechanical Planarization (CMP) to predict the average material removal rate. Through the prism of a benchmark case study, this paper empirically investigates how transfer learning can improve the updatability of a VM CNN-based model.\",\"PeriodicalId\":436890,\"journal\":{\"name\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"1706 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asmc54647.2022.9792514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asmc54647.2022.9792514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制造过程经常受到生产周期漂移的影响。本研究应用迁移学习(TL)范式支持基于卷积神经网络(CNN)的虚拟计量(VM)模型的更新。将虚拟机应用于化学机械刨平(CMP)来预测平均材料去除率。通过一个基准案例研究,本文实证研究了迁移学习如何提高基于VM cnn的模型的可更新性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Updating a Virtual Metrology Model in Semiconductor Manufacturing via Transfer Learning
Manufacturing processes are often subject to drifts over production cycles. This study applies the paradigm of Transfer Learning (TL) to support the updating of a Virtual Metrology (VM) model based on a Convolutional Neural Network (CNN). The VM is applied to a Chemical Mechanical Planarization (CMP) to predict the average material removal rate. Through the prism of a benchmark case study, this paper empirically investigates how transfer learning can improve the updatability of a VM CNN-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-wafer organic defect review and classification with universal surface enhanced Raman spectroscopy Supply crisis parts commodities management during unplanned FAB shutdown recovery Nuisance Rate Improvement of E-beam Defect Classification Real-Time Automated Socket Inspection using Advanced Computer Vision and Machine Learning : DI: Defect Inspection and Reduction Negative Mode E-Beam Inspection of the Contact Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1