双栅极纳米Mosfet有效栅极静电的栅极绝缘子选择

G. Thriveni, K. Ghosh
{"title":"双栅极纳米Mosfet有效栅极静电的栅极绝缘子选择","authors":"G. Thriveni, K. Ghosh","doi":"10.1109/ICDCSYST.2018.8605073","DOIUrl":null,"url":null,"abstract":"A numerical model using self consistent Poisson's equation solver is presented to elucidate the potential profile and current-voltage characteristics of double gate nanoMOSFET using 32nm technology. Here we have explored the performance of the nanodevice with different dielectric layers. The focus of this work is to identify the type of gate dielectric material which is capable enough to control the electrostatics across the channel through gate bias and reduce the tunneling current. We find that $\\mathrm {T}\\mathrm {i}\\mathrm {O}_{2}$ layer having k=80 produces higher tunneling current through gate leakage although it exhibited stronger gate control on the channel conduction. A combination of $\\mathrm {T}\\mathrm {i}\\mathrm {O}_{2}$ and $\\mathrm {S}\\mathrm {i}\\mathrm {O}_{2}$ dielectric layers is proposed to mitigate tunnelling in these devices and improve its performance.","PeriodicalId":175583,"journal":{"name":"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Choice of Gate Insulator for Effective Gate Electrostatics in Double Gate Nanoscale Mosfet\",\"authors\":\"G. Thriveni, K. Ghosh\",\"doi\":\"10.1109/ICDCSYST.2018.8605073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical model using self consistent Poisson's equation solver is presented to elucidate the potential profile and current-voltage characteristics of double gate nanoMOSFET using 32nm technology. Here we have explored the performance of the nanodevice with different dielectric layers. The focus of this work is to identify the type of gate dielectric material which is capable enough to control the electrostatics across the channel through gate bias and reduce the tunneling current. We find that $\\\\mathrm {T}\\\\mathrm {i}\\\\mathrm {O}_{2}$ layer having k=80 produces higher tunneling current through gate leakage although it exhibited stronger gate control on the channel conduction. A combination of $\\\\mathrm {T}\\\\mathrm {i}\\\\mathrm {O}_{2}$ and $\\\\mathrm {S}\\\\mathrm {i}\\\\mathrm {O}_{2}$ dielectric layers is proposed to mitigate tunnelling in these devices and improve its performance.\",\"PeriodicalId\":175583,\"journal\":{\"name\":\"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSYST.2018.8605073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2018.8605073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用自相容泊松方程求解器建立了一个数值模型,分析了采用32nm工艺的双栅纳米mososfet的电位分布和电流电压特性。本文探讨了不同介电层的纳米器件的性能。本工作的重点是确定能够通过栅极偏置控制沟道上的静电并减少隧道电流的栅极介电材料类型。我们发现,k=80的$\ mathm {T}\ mathm {i}\ mathm {O}_{2}$层虽然对沟道导通具有较强的栅极控制,但通过栅漏产生较高的隧穿电流。提出了$\mathrm {T}\mathrm {i}\mathrm {O}_{2}$和$\mathrm {S}\mathrm {i}\mathrm {O}_{2}$电介质层的组合,以减轻这些器件中的隧穿现象,提高其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Choice of Gate Insulator for Effective Gate Electrostatics in Double Gate Nanoscale Mosfet
A numerical model using self consistent Poisson's equation solver is presented to elucidate the potential profile and current-voltage characteristics of double gate nanoMOSFET using 32nm technology. Here we have explored the performance of the nanodevice with different dielectric layers. The focus of this work is to identify the type of gate dielectric material which is capable enough to control the electrostatics across the channel through gate bias and reduce the tunneling current. We find that $\mathrm {T}\mathrm {i}\mathrm {O}_{2}$ layer having k=80 produces higher tunneling current through gate leakage although it exhibited stronger gate control on the channel conduction. A combination of $\mathrm {T}\mathrm {i}\mathrm {O}_{2}$ and $\mathrm {S}\mathrm {i}\mathrm {O}_{2}$ dielectric layers is proposed to mitigate tunnelling in these devices and improve its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Power Dynamic Comparator For A 12-Bit Pipelined Successive Approximation Register (SAR) ADC A Comparative Study of Pulse Triggered Flipflops Pulsed Laser Deposited Molybdenum Oxides (MoO3 & MoO2) Thin Films for Nanoelectronics Device Application Comparison of Braun Multiplier and Wallace Multiplier Techniques in VLSI Sensor Networks based Water Quality Monitoring Systems for Intensive Fish Culture -A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1