基于线性复杂度因子累积滤波器的联合立体摄像机标定与多目标跟踪

M. Campbell, Daniel E. Clark
{"title":"基于线性复杂度因子累积滤波器的联合立体摄像机标定与多目标跟踪","authors":"M. Campbell, Daniel E. Clark","doi":"10.1109/SDF.2019.8916653","DOIUrl":null,"url":null,"abstract":"The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"9 Volume 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint stereo camera calibration and multi-target tracking using the linear-complexity factorial cumulant filter\",\"authors\":\"M. Campbell, Daniel E. Clark\",\"doi\":\"10.1109/SDF.2019.8916653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"9 Volume 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

未知传感器(如相机)的标定是传感器融合领域的一个关键问题。本文通过扩展先前介绍的工作来解决这个问题。该方法使用统一的贝叶斯框架和另一种称为视差空间的参数化来参考已知摄像机校准未知摄像机的空间参数。在这里,使用最近开发的线性复杂度累积(LCC)滤波器来改进框架的多目标跟踪和校准方面。在模拟数据上与概率假设密度(PHD)方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint stereo camera calibration and multi-target tracking using the linear-complexity factorial cumulant filter
The calibration of an unknown sensor, such as a camera, is a key issue in the sensor fusion domain. This paper addresses this problem by expanding upon previously introduced work. This method uses a unified Bayesian framework with an alternative parameterisation known as disparity space to calibrate an unknown camera's spatial parameters in reference to a known camera. Here, the recently developedLinear-Complexity Cumulant (LCC) filter is used to improve the both the multitarget tracking and calibration facets of the framework. The new implementation is compared against a Probability Hypothesis Density (PHD) method upon simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications Multi-Model Bayesian Kriging for Urban Traffic State Prediction Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images Comparison of Track to Track fusion methods for nonlinear process and measurement models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1