T. Huesgen, V. Polezhaev, Ankit Sharma, Chunlei Liu, M. Montazerian, P. Stadler, N. Pavliček, G. Salvatore
{"title":"混合DBC/PCB功率半导体预封装的可靠性筛选","authors":"T. Huesgen, V. Polezhaev, Ankit Sharma, Chunlei Liu, M. Montazerian, P. Stadler, N. Pavliček, G. Salvatore","doi":"10.23919/empc53418.2021.9584983","DOIUrl":null,"url":null,"abstract":"PCB embedding in combination with direct-bonded copper (DBC) substrates is an attractive approach for packaging of power semiconductors facilitating low-inductive designs while relying on a proven insulating material. However, the CTE mismatch of these materials could cause reliability issues. This study presents an initial reliability screening using simple IGBT prepackages with alumina-based DBC as test vehicles. After -40/150 °C temperature cycles, fracture of the substrate and the chip is observed, resulting in an increased on-state resistance. Literature data suggest that the substrate failure is independent from the embedding. To gain a deeper understanding of the limitations of the technology, further research with optimized DBC substrates is required.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reliability Screening of a Hybrid DBC/PCB power semiconductor prepackage\",\"authors\":\"T. Huesgen, V. Polezhaev, Ankit Sharma, Chunlei Liu, M. Montazerian, P. Stadler, N. Pavliček, G. Salvatore\",\"doi\":\"10.23919/empc53418.2021.9584983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PCB embedding in combination with direct-bonded copper (DBC) substrates is an attractive approach for packaging of power semiconductors facilitating low-inductive designs while relying on a proven insulating material. However, the CTE mismatch of these materials could cause reliability issues. This study presents an initial reliability screening using simple IGBT prepackages with alumina-based DBC as test vehicles. After -40/150 °C temperature cycles, fracture of the substrate and the chip is observed, resulting in an increased on-state resistance. Literature data suggest that the substrate failure is independent from the embedding. To gain a deeper understanding of the limitations of the technology, further research with optimized DBC substrates is required.\",\"PeriodicalId\":348887,\"journal\":{\"name\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/empc53418.2021.9584983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability Screening of a Hybrid DBC/PCB power semiconductor prepackage
PCB embedding in combination with direct-bonded copper (DBC) substrates is an attractive approach for packaging of power semiconductors facilitating low-inductive designs while relying on a proven insulating material. However, the CTE mismatch of these materials could cause reliability issues. This study presents an initial reliability screening using simple IGBT prepackages with alumina-based DBC as test vehicles. After -40/150 °C temperature cycles, fracture of the substrate and the chip is observed, resulting in an increased on-state resistance. Literature data suggest that the substrate failure is independent from the embedding. To gain a deeper understanding of the limitations of the technology, further research with optimized DBC substrates is required.