14.4 5GHz - 95db -参考杂散9.5mW数字分数n锁相环,采用参考倍增时间-数字转换器和参考杂散抵消,采用65nm CMOS

Hyojun Kim, Jinwoo Sang, Hyunik Kim, Youngwoo Jo, Taeik Kim, Hojin Park, Seonghwan Cho
{"title":"14.4 5GHz - 95db -参考杂散9.5mW数字分数n锁相环,采用参考倍增时间-数字转换器和参考杂散抵消,采用65nm CMOS","authors":"Hyojun Kim, Jinwoo Sang, Hyunik Kim, Youngwoo Jo, Taeik Kim, Hojin Park, Seonghwan Cho","doi":"10.1109/ISSCC.2015.7063024","DOIUrl":null,"url":null,"abstract":"Since the advent of digital PLLs (DPLLs), various techniques have been proposed for a low-power, low-noise fractional-N frequency synthesizer. Among the various innovations, a reference-multiplied architecture offers distinct advantages compared to conventional DPLLs [1]. First, low quantization noise (q-noise) can be achieved without complex q-noise cancellation schemes, since the delta-sigma modulator (DSM) has a high oversampling ratio and its q-noise is pushed to higher frequencies. Second, noise requirements of PLL building blocks become less stringent as the division value is reduced. For a digital PLL using a Nyquist-rate time-to-digital converter (TDC), if the reference is multiplied by N the time resolution of the TDC can be reduced by √N for the same noise level. Unfortunately, one drawback of the reference-multiplied PLL is the increase in power and complexity due to the reference-multiplying circuit. In this paper, we propose a reference-multiplied digital fractional-N PLL that has negligible overhead in the reference-multiplying circuit. To save power, a frequency-multiplied TDC (FMTDC) consisting of an open-loop multiplying DLL (MDLL) and a Vernier delay-line (VDL) TDC is proposed, which share their delay lines. High spurious tone coming from the open-loop MDLL is canceled by an adaptive filter located between TDC and loop filter.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"14.4 A 5GHz −95dBc-reference-Spur 9.5mW digital fractional-N PLL using reference-multiplied time-to-digital converter and reference-spur cancellation in 65nm CMOS\",\"authors\":\"Hyojun Kim, Jinwoo Sang, Hyunik Kim, Youngwoo Jo, Taeik Kim, Hojin Park, Seonghwan Cho\",\"doi\":\"10.1109/ISSCC.2015.7063024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the advent of digital PLLs (DPLLs), various techniques have been proposed for a low-power, low-noise fractional-N frequency synthesizer. Among the various innovations, a reference-multiplied architecture offers distinct advantages compared to conventional DPLLs [1]. First, low quantization noise (q-noise) can be achieved without complex q-noise cancellation schemes, since the delta-sigma modulator (DSM) has a high oversampling ratio and its q-noise is pushed to higher frequencies. Second, noise requirements of PLL building blocks become less stringent as the division value is reduced. For a digital PLL using a Nyquist-rate time-to-digital converter (TDC), if the reference is multiplied by N the time resolution of the TDC can be reduced by √N for the same noise level. Unfortunately, one drawback of the reference-multiplied PLL is the increase in power and complexity due to the reference-multiplying circuit. In this paper, we propose a reference-multiplied digital fractional-N PLL that has negligible overhead in the reference-multiplying circuit. To save power, a frequency-multiplied TDC (FMTDC) consisting of an open-loop multiplying DLL (MDLL) and a Vernier delay-line (VDL) TDC is proposed, which share their delay lines. High spurious tone coming from the open-loop MDLL is canceled by an adaptive filter located between TDC and loop filter.\",\"PeriodicalId\":188403,\"journal\":{\"name\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2015.7063024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7063024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

自从数字锁相环(dpll)出现以来,人们提出了各种技术来实现低功率、低噪声的分数n频率合成器。在各种创新中,与传统dpll相比,参考倍增架构具有明显的优势[1]。首先,由于delta-sigma调制器(DSM)具有高过采样比,其q噪声被推至更高的频率,因此无需复杂的q噪声消除方案即可实现低量化噪声(q噪声)。其次,随着分割值的降低,锁相环构建模块的噪声要求变得不那么严格。对于使用奈奎斯特速率时间-数字转换器(TDC)的数字锁相环,如果参考值乘以N,在相同噪声水平下,TDC的时间分辨率可以降低√N。不幸的是,参考倍增锁相环的一个缺点是由于参考倍增电路而增加了功率和复杂性。在本文中,我们提出了一个参考倍增数字分数n锁相环,它在参考倍增电路中具有可忽略不计的开销。为了节省功耗,提出了一种由开环相乘DLL (MDLL)和游标延迟线(VDL)组成的乘频TDC (FMTDC),它们共享各自的延迟线。开环MDLL产生的高杂散音被位于上止点和环路滤波器之间的自适应滤波器抵消。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
14.4 A 5GHz −95dBc-reference-Spur 9.5mW digital fractional-N PLL using reference-multiplied time-to-digital converter and reference-spur cancellation in 65nm CMOS
Since the advent of digital PLLs (DPLLs), various techniques have been proposed for a low-power, low-noise fractional-N frequency synthesizer. Among the various innovations, a reference-multiplied architecture offers distinct advantages compared to conventional DPLLs [1]. First, low quantization noise (q-noise) can be achieved without complex q-noise cancellation schemes, since the delta-sigma modulator (DSM) has a high oversampling ratio and its q-noise is pushed to higher frequencies. Second, noise requirements of PLL building blocks become less stringent as the division value is reduced. For a digital PLL using a Nyquist-rate time-to-digital converter (TDC), if the reference is multiplied by N the time resolution of the TDC can be reduced by √N for the same noise level. Unfortunately, one drawback of the reference-multiplied PLL is the increase in power and complexity due to the reference-multiplying circuit. In this paper, we propose a reference-multiplied digital fractional-N PLL that has negligible overhead in the reference-multiplying circuit. To save power, a frequency-multiplied TDC (FMTDC) consisting of an open-loop multiplying DLL (MDLL) and a Vernier delay-line (VDL) TDC is proposed, which share their delay lines. High spurious tone coming from the open-loop MDLL is canceled by an adaptive filter located between TDC and loop filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1