在低于0.35 v VDD下提供比多栅CMOS更好性能的异质结TFET逆变器的全量子模拟

E. Baravelli, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani
{"title":"在低于0.35 v VDD下提供比多栅CMOS更好性能的异质结TFET逆变器的全量子模拟","authors":"E. Baravelli, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani","doi":"10.1109/E3S.2013.6705875","DOIUrl":null,"url":null,"abstract":"Tunnel FETs (TFETs) are promising alternatives to the conventional CMOS technology for steeper-than-60mV/dec subthreshold slopes (SS) required to limit power consumption of integrated circuits [1]. Current challenges for TFET integration into practical circuit applications include reaching acceptable ION levels, suppressing ambipolar effects, improving output characteristics [2], and simultaneously co-integrating optimized n-and p-type devices. All of these issues are carefully taken into account in this work. Device- and circuit-level design of TFET inverters is proposed, based on co-optimized n-and p-type TFETs integrated on the same InAs/ Al0.05Ga0.95Sb platform. A full-band quantum simulation approach is adopted to properly account for quantum effects which strongly influence TFET device, and hence circuit, performance. This advances the state of the art of TFET-based circuit literature, which is mostly based on simplified TCAD models [3], with rare calibrations against atomistic calculations [4].","PeriodicalId":231837,"journal":{"name":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-quantum simulation of heterojunction TFET inverters providing better performance than multi-gate CMOS at sub-0.35V VDD\",\"authors\":\"E. Baravelli, E. Gnani, A. Gnudi, S. Reggiani, G. Baccarani\",\"doi\":\"10.1109/E3S.2013.6705875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunnel FETs (TFETs) are promising alternatives to the conventional CMOS technology for steeper-than-60mV/dec subthreshold slopes (SS) required to limit power consumption of integrated circuits [1]. Current challenges for TFET integration into practical circuit applications include reaching acceptable ION levels, suppressing ambipolar effects, improving output characteristics [2], and simultaneously co-integrating optimized n-and p-type devices. All of these issues are carefully taken into account in this work. Device- and circuit-level design of TFET inverters is proposed, based on co-optimized n-and p-type TFETs integrated on the same InAs/ Al0.05Ga0.95Sb platform. A full-band quantum simulation approach is adopted to properly account for quantum effects which strongly influence TFET device, and hence circuit, performance. This advances the state of the art of TFET-based circuit literature, which is mostly based on simplified TCAD models [3], with rare calibrations against atomistic calculations [4].\",\"PeriodicalId\":231837,\"journal\":{\"name\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E3S.2013.6705875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E3S.2013.6705875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

隧道场效应管(tfet)是传统CMOS技术的有前途的替代品,用于限制集成电路功耗所需的大于60mv /dec的亚阈值斜率(SS)[1]。目前将TFET集成到实际电路应用中的挑战包括达到可接受的离子水平、抑制双极效应、改善输出特性[2],以及同时协积优化的n型和p型器件。所有这些问题在这项工作中都得到了认真的考虑。基于集成在同一InAs/ Al0.05Ga0.95Sb平台上的n型和p型TFET的协同优化,提出了TFET逆变器的器件级和电路级设计。采用全频带量子模拟方法,对影响ttfet器件及电路性能的量子效应进行了分析。这推动了基于tfet的电路文献的发展,这些文献大多基于简化的TCAD模型[3],很少针对原子计算进行校准[4]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Full-quantum simulation of heterojunction TFET inverters providing better performance than multi-gate CMOS at sub-0.35V VDD
Tunnel FETs (TFETs) are promising alternatives to the conventional CMOS technology for steeper-than-60mV/dec subthreshold slopes (SS) required to limit power consumption of integrated circuits [1]. Current challenges for TFET integration into practical circuit applications include reaching acceptable ION levels, suppressing ambipolar effects, improving output characteristics [2], and simultaneously co-integrating optimized n-and p-type devices. All of these issues are carefully taken into account in this work. Device- and circuit-level design of TFET inverters is proposed, based on co-optimized n-and p-type TFETs integrated on the same InAs/ Al0.05Ga0.95Sb platform. A full-band quantum simulation approach is adopted to properly account for quantum effects which strongly influence TFET device, and hence circuit, performance. This advances the state of the art of TFET-based circuit literature, which is mostly based on simplified TCAD models [3], with rare calibrations against atomistic calculations [4].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs Ultra-Low power neuromorphic computing with spin-torque devices Power-efficient server utilization in compute clouds Energy transparency from hardware to software Prospects for high-aspect-ratio FinFETs in low-power logic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1