{"title":"柔性温度-压力有机传感器","authors":"L. P. Martins, H. Boudinov","doi":"10.1109/SBMicro.2019.8919330","DOIUrl":null,"url":null,"abstract":"Our work intends to develop dual-parameter pressure-temperature sensors by taking advantage of the independent thermoelectric and piezo resistive effects in a single flexible and compressible conductive foam. Such device allows to make measurements of simultaneous temperature and pressure monitoring by transducing external stimuli into separate electrical signals. The devices can be self-powered by a temperature gradient with a promising temperature and pressure detection resolution for applications in artificial intelligence and healthcare systems. Here, we describe the suggested method and discuss preliminary sensor results.","PeriodicalId":403446,"journal":{"name":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible Temperature-Pressure Organic Sensor\",\"authors\":\"L. P. Martins, H. Boudinov\",\"doi\":\"10.1109/SBMicro.2019.8919330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our work intends to develop dual-parameter pressure-temperature sensors by taking advantage of the independent thermoelectric and piezo resistive effects in a single flexible and compressible conductive foam. Such device allows to make measurements of simultaneous temperature and pressure monitoring by transducing external stimuli into separate electrical signals. The devices can be self-powered by a temperature gradient with a promising temperature and pressure detection resolution for applications in artificial intelligence and healthcare systems. Here, we describe the suggested method and discuss preliminary sensor results.\",\"PeriodicalId\":403446,\"journal\":{\"name\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBMicro.2019.8919330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th Symposium on Microelectronics Technology and Devices (SBMicro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBMicro.2019.8919330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Our work intends to develop dual-parameter pressure-temperature sensors by taking advantage of the independent thermoelectric and piezo resistive effects in a single flexible and compressible conductive foam. Such device allows to make measurements of simultaneous temperature and pressure monitoring by transducing external stimuli into separate electrical signals. The devices can be self-powered by a temperature gradient with a promising temperature and pressure detection resolution for applications in artificial intelligence and healthcare systems. Here, we describe the suggested method and discuss preliminary sensor results.