F. Mochizuki, K. Kagawa, S. Okihara, M. Seo, Bo Zhang, T. Takasawa, K. Yasutomi, S. Kawahito
{"title":"6.4单镜头200Mfps 5×3-aperture压缩CMOS成像仪","authors":"F. Mochizuki, K. Kagawa, S. Okihara, M. Seo, Bo Zhang, T. Takasawa, K. Yasutomi, S. Kawahito","doi":"10.1109/ISSCC.2015.7062953","DOIUrl":null,"url":null,"abstract":"Ultra-high-speed cameras are a powerful tool for biology as well as physics and mechanics to analyze the process of ultra-high-speed phenomena. The frame rate of the state-of-the-art burst-readout ultra-high-speed silicon imagers has reached approximately 20Mfps [1,2]. To observe faster phenomena such as plasma generation in laser processing, the state of electrons in a chemical reaction, and so on, much faster cameras are desired. There are several factors that prevent the speed-up of the ultra-high-speed imager: high gate control voltages and high power dissipation for high-efficiency multi-stage charge transfer in CCD imagers, and the current density limit of the power and ground lines and RC-constant of the vertical readout lines in CMOS imagers. Computational imaging can be a promising option to break the design limit of solid-state ultra-high-speed imagers. Several dedicated CMOS imagers have been demonstrated [3,4]. This paper presents a demonstration of a single-chip ultra-high-speed multi-aperture CMOS imager based on compressive sampling. The imager performs single-shot burst-readout image acquisition at a frame rate of 200Mfps.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"6.4 Single-shot 200Mfps 5×3-aperture compressive CMOS imager\",\"authors\":\"F. Mochizuki, K. Kagawa, S. Okihara, M. Seo, Bo Zhang, T. Takasawa, K. Yasutomi, S. Kawahito\",\"doi\":\"10.1109/ISSCC.2015.7062953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-high-speed cameras are a powerful tool for biology as well as physics and mechanics to analyze the process of ultra-high-speed phenomena. The frame rate of the state-of-the-art burst-readout ultra-high-speed silicon imagers has reached approximately 20Mfps [1,2]. To observe faster phenomena such as plasma generation in laser processing, the state of electrons in a chemical reaction, and so on, much faster cameras are desired. There are several factors that prevent the speed-up of the ultra-high-speed imager: high gate control voltages and high power dissipation for high-efficiency multi-stage charge transfer in CCD imagers, and the current density limit of the power and ground lines and RC-constant of the vertical readout lines in CMOS imagers. Computational imaging can be a promising option to break the design limit of solid-state ultra-high-speed imagers. Several dedicated CMOS imagers have been demonstrated [3,4]. This paper presents a demonstration of a single-chip ultra-high-speed multi-aperture CMOS imager based on compressive sampling. The imager performs single-shot burst-readout image acquisition at a frame rate of 200Mfps.\",\"PeriodicalId\":188403,\"journal\":{\"name\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2015.7062953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7062953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-high-speed cameras are a powerful tool for biology as well as physics and mechanics to analyze the process of ultra-high-speed phenomena. The frame rate of the state-of-the-art burst-readout ultra-high-speed silicon imagers has reached approximately 20Mfps [1,2]. To observe faster phenomena such as plasma generation in laser processing, the state of electrons in a chemical reaction, and so on, much faster cameras are desired. There are several factors that prevent the speed-up of the ultra-high-speed imager: high gate control voltages and high power dissipation for high-efficiency multi-stage charge transfer in CCD imagers, and the current density limit of the power and ground lines and RC-constant of the vertical readout lines in CMOS imagers. Computational imaging can be a promising option to break the design limit of solid-state ultra-high-speed imagers. Several dedicated CMOS imagers have been demonstrated [3,4]. This paper presents a demonstration of a single-chip ultra-high-speed multi-aperture CMOS imager based on compressive sampling. The imager performs single-shot burst-readout image acquisition at a frame rate of 200Mfps.