恢复初始失效模式的实用方法及背面聚焦离子束的缺陷显示

Alvina Jean Tampos, Karl Villareal
{"title":"恢复初始失效模式的实用方法及背面聚焦离子束的缺陷显示","authors":"Alvina Jean Tampos, Karl Villareal","doi":"10.31399/asm.cp.istfa2021p0362","DOIUrl":null,"url":null,"abstract":"\n Complementary Metal-Oxide Semiconductor (CMOS) Image Sensors are gaining popularity most especially in Automotive Safety and Advanced Driver-Assistance Systems (ADAS) applications. Customer application modules involve oftentimes a third party supplier. When failures involve interaction between an image sensor die and the customer's module, the Failure Analyst has to know the exact failure mechanism to pinpoint whether root cause is in the die fabrication (fab) or packaging assembly (third party supplier). Challenges can befall the analyst: failure modes can recover which renders the unit functional and laboratories most often do not have complete sophisticated analytical laboratory equipment for electrical testing, fault isolation and sample preparation. In this paper, a case study of a CMOS Image Sensor is presented wherein the failure mode recovered which was restored and how the structural limitations were overcome for fault isolation on both front- and back-side. A modified process flow was performed to visualize the defect through backside Focused Ion Beam (FIB) cross-section.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Methodologies in Restoring Initial Failure Mode and Backside Focused Ion Beam Cross-Section for Defect Visualization\",\"authors\":\"Alvina Jean Tampos, Karl Villareal\",\"doi\":\"10.31399/asm.cp.istfa2021p0362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Complementary Metal-Oxide Semiconductor (CMOS) Image Sensors are gaining popularity most especially in Automotive Safety and Advanced Driver-Assistance Systems (ADAS) applications. Customer application modules involve oftentimes a third party supplier. When failures involve interaction between an image sensor die and the customer's module, the Failure Analyst has to know the exact failure mechanism to pinpoint whether root cause is in the die fabrication (fab) or packaging assembly (third party supplier). Challenges can befall the analyst: failure modes can recover which renders the unit functional and laboratories most often do not have complete sophisticated analytical laboratory equipment for electrical testing, fault isolation and sample preparation. In this paper, a case study of a CMOS Image Sensor is presented wherein the failure mode recovered which was restored and how the structural limitations were overcome for fault isolation on both front- and back-side. A modified process flow was performed to visualize the defect through backside Focused Ion Beam (FIB) cross-section.\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互补金属氧化物半导体(CMOS)图像传感器在汽车安全和高级驾驶辅助系统(ADAS)应用中越来越受欢迎。客户应用程序模块通常涉及第三方供应商。当故障涉及图像传感器模具和客户模块之间的交互作用时,故障分析师必须知道确切的故障机制,以查明根本原因是在模具制造(fab)还是封装组装(第三方供应商)。分析人员可能会遇到挑战:故障模式可以恢复,使设备正常工作,实验室通常没有完整的精密分析实验室设备,用于电气测试、故障隔离和样品制备。本文介绍了一种CMOS图像传感器的案例研究,其中恢复了故障模式,并恢复了故障模式,以及如何克服结构限制以实现正面和背面的故障隔离。采用改进的工艺流程,通过后部聚焦离子束(FIB)的横截面显示缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Methodologies in Restoring Initial Failure Mode and Backside Focused Ion Beam Cross-Section for Defect Visualization
Complementary Metal-Oxide Semiconductor (CMOS) Image Sensors are gaining popularity most especially in Automotive Safety and Advanced Driver-Assistance Systems (ADAS) applications. Customer application modules involve oftentimes a third party supplier. When failures involve interaction between an image sensor die and the customer's module, the Failure Analyst has to know the exact failure mechanism to pinpoint whether root cause is in the die fabrication (fab) or packaging assembly (third party supplier). Challenges can befall the analyst: failure modes can recover which renders the unit functional and laboratories most often do not have complete sophisticated analytical laboratory equipment for electrical testing, fault isolation and sample preparation. In this paper, a case study of a CMOS Image Sensor is presented wherein the failure mode recovered which was restored and how the structural limitations were overcome for fault isolation on both front- and back-side. A modified process flow was performed to visualize the defect through backside Focused Ion Beam (FIB) cross-section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCM Application and Failure Analysis Procedure for Ion-Implantation Issues in Power Devices Low Angle Annular Dark Field Scanning Transmission Electron Microscopy Analysis of Phase Change Material Report Classification for Semiconductor Failure Analysis Application and Optimization of Automated ECCI Mapping to the Analysis of Lowly Defective Epitaxial Films on Blanket or Patterned Wafers Logo Classification and Data Augmentation Techniques for PCB Assurance and Counterfeit Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1