{"title":"聚类溯源通过数据抽象促进溯源探索","authors":"Linus Karsai, A. Fekete, J. Kay, P. Missier","doi":"10.1145/2939502.2939508","DOIUrl":null,"url":null,"abstract":"As digital objects become increasingly important in people's lives, people may need to understand the provenance, or lineage and history, of an important digital object, to understand how it was produced. This is particularly important for objects created from large, multi-source collections of personal data. As the metadata describing provenance, Provenance Data, is commonly represented as a labelled directed acyclic graph, the challenge is to create effective interfaces onto such graphs so that people can understand the provenance of key digital objects. This unsolved problem is especially challenging for the case of novice and intermittent users and complex provenance graphs. We tackle this by creating an interface based on a clustering approach. This was designed to enable users to view provenance graphs, and to simplify complex graphs by combining several nodes. Our core contribution is the design of a prototype interface that supports clustering and its analytic evaluation in terms of desirable properties of visualisation interfaces.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Clustering provenance facilitating provenance exploration through data abstraction\",\"authors\":\"Linus Karsai, A. Fekete, J. Kay, P. Missier\",\"doi\":\"10.1145/2939502.2939508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As digital objects become increasingly important in people's lives, people may need to understand the provenance, or lineage and history, of an important digital object, to understand how it was produced. This is particularly important for objects created from large, multi-source collections of personal data. As the metadata describing provenance, Provenance Data, is commonly represented as a labelled directed acyclic graph, the challenge is to create effective interfaces onto such graphs so that people can understand the provenance of key digital objects. This unsolved problem is especially challenging for the case of novice and intermittent users and complex provenance graphs. We tackle this by creating an interface based on a clustering approach. This was designed to enable users to view provenance graphs, and to simplify complex graphs by combining several nodes. Our core contribution is the design of a prototype interface that supports clustering and its analytic evaluation in terms of desirable properties of visualisation interfaces.\",\"PeriodicalId\":356971,\"journal\":{\"name\":\"HILDA '16\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HILDA '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2939502.2939508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Clustering provenance facilitating provenance exploration through data abstraction
As digital objects become increasingly important in people's lives, people may need to understand the provenance, or lineage and history, of an important digital object, to understand how it was produced. This is particularly important for objects created from large, multi-source collections of personal data. As the metadata describing provenance, Provenance Data, is commonly represented as a labelled directed acyclic graph, the challenge is to create effective interfaces onto such graphs so that people can understand the provenance of key digital objects. This unsolved problem is especially challenging for the case of novice and intermittent users and complex provenance graphs. We tackle this by creating an interface based on a clustering approach. This was designed to enable users to view provenance graphs, and to simplify complex graphs by combining several nodes. Our core contribution is the design of a prototype interface that supports clustering and its analytic evaluation in terms of desirable properties of visualisation interfaces.