一种改进的随机nelder-mead数值优化算法

Zhiyu Li, Yi Zhan
{"title":"一种改进的随机nelder-mead数值优化算法","authors":"Zhiyu Li, Yi Zhan","doi":"10.1109/ICIST.2014.6920603","DOIUrl":null,"url":null,"abstract":"The Stochastic Nelder-Mead, a recently developed variant of the classic Nelder-Mead algorithm, is a direct search method for derivative-free, nonlinear and black-box stochastic optimization problem. A key factor that influences its performance is obtaining reasonable rankings on the simplex points with random noise. We propose a new ranking procedure that integrates a selection sorting algorithm with statistical hypothesis testing method. This procedure provides an efficient `fine-granular' re-sampling scheme in which the sample sizes can be estimated more precisely and with more flexibility. A numerical study indicates that the revised algorithm can generally outperform its original in terms of both accuracy and stability.","PeriodicalId":306383,"journal":{"name":"2014 4th IEEE International Conference on Information Science and Technology","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A revised stochastic nelder-mead algorithm for numerical optimization\",\"authors\":\"Zhiyu Li, Yi Zhan\",\"doi\":\"10.1109/ICIST.2014.6920603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Stochastic Nelder-Mead, a recently developed variant of the classic Nelder-Mead algorithm, is a direct search method for derivative-free, nonlinear and black-box stochastic optimization problem. A key factor that influences its performance is obtaining reasonable rankings on the simplex points with random noise. We propose a new ranking procedure that integrates a selection sorting algorithm with statistical hypothesis testing method. This procedure provides an efficient `fine-granular' re-sampling scheme in which the sample sizes can be estimated more precisely and with more flexibility. A numerical study indicates that the revised algorithm can generally outperform its original in terms of both accuracy and stability.\",\"PeriodicalId\":306383,\"journal\":{\"name\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 4th IEEE International Conference on Information Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST.2014.6920603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 4th IEEE International Conference on Information Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2014.6920603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随机Nelder-Mead算法是在经典Nelder-Mead算法的基础上发展起来的一种直接搜索方法,用于求解无导数、非线性、黑盒随机优化问题。影响其性能的一个关键因素是对随机噪声下的单纯形点进行合理的排序。本文提出了一种将选择排序算法与统计假设检验方法相结合的排序方法。该程序提供了一种有效的“细颗粒”重新采样方案,其中样本量可以更精确地估计,并具有更大的灵活性。数值研究表明,改进后的算法在精度和稳定性方面都优于原算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A revised stochastic nelder-mead algorithm for numerical optimization
The Stochastic Nelder-Mead, a recently developed variant of the classic Nelder-Mead algorithm, is a direct search method for derivative-free, nonlinear and black-box stochastic optimization problem. A key factor that influences its performance is obtaining reasonable rankings on the simplex points with random noise. We propose a new ranking procedure that integrates a selection sorting algorithm with statistical hypothesis testing method. This procedure provides an efficient `fine-granular' re-sampling scheme in which the sample sizes can be estimated more precisely and with more flexibility. A numerical study indicates that the revised algorithm can generally outperform its original in terms of both accuracy and stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined selective mapping and extended hamming codes for PAPR reduction in OFDM systems Outage analysis of two-way AF relaying systems with imperfect CSI and multiple interferers over Nakagami-m fading channels An empirical study of filter-based feature selection algorithms using noisy training data Using DTW to measure trajectory distance in grid space Parameter optimization for hyperspectral image compression algorithm of maximum error controllable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1