InGaAsP量子阱中电光相位调制的理论优化。

D. Botteldooren, R. Baets
{"title":"InGaAsP量子阱中电光相位调制的理论优化。","authors":"D. Botteldooren, R. Baets","doi":"10.1364/qwoe.1989.pd5","DOIUrl":null,"url":null,"abstract":"The superior performance of light modulators based on the quantum confined Stark effect has been accepted for some time. Many experimental and theoretical data were obtained for GaAs-AlGaAs QW and SL. In the 1.55μm optical window, which is of particular interest for optical communication purposes, InGaAs and InGaAsP QW give better performances. For the ternary material refractive index data were published1 and the use of InGaAs and InGaAsP QW's in waveguide modulators2 and DBR lasers3 was demonstrated. Recently the advantage of using quaternary quantum wells for electrooptic phase modulation at 1.55μm was stressed4. The main point of interest is the additional degree of freedom, namely the InGaAsP composition. The problem of finding the optimal composition together with the best possible QW size for maximal phase modulation, within certain restrictions for the applied field, is treated on a theoretical basis in this paper. The modeling of the electric field dependent absorption in QW’s has already obtained a lot of attention5. Refractive index changes under applied field are much more difficult to model accurately due to the long energy range of the changes induced by the field. Recently Yamamoto et al.6 presented some theoretical results in a 30nm InGaAsP QW. They neglect exciton effects and only consider contributions of heavy holes. Both approximations work quite well in the large well limit, but are less accurate for smaller QW's.","PeriodicalId":205579,"journal":{"name":"Quantum Wells for Optics and Optoelectronics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical optimisation of Electrooptical Phase Modulation in InGaAsP Quantumwells.\",\"authors\":\"D. Botteldooren, R. Baets\",\"doi\":\"10.1364/qwoe.1989.pd5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The superior performance of light modulators based on the quantum confined Stark effect has been accepted for some time. Many experimental and theoretical data were obtained for GaAs-AlGaAs QW and SL. In the 1.55μm optical window, which is of particular interest for optical communication purposes, InGaAs and InGaAsP QW give better performances. For the ternary material refractive index data were published1 and the use of InGaAs and InGaAsP QW's in waveguide modulators2 and DBR lasers3 was demonstrated. Recently the advantage of using quaternary quantum wells for electrooptic phase modulation at 1.55μm was stressed4. The main point of interest is the additional degree of freedom, namely the InGaAsP composition. The problem of finding the optimal composition together with the best possible QW size for maximal phase modulation, within certain restrictions for the applied field, is treated on a theoretical basis in this paper. The modeling of the electric field dependent absorption in QW’s has already obtained a lot of attention5. Refractive index changes under applied field are much more difficult to model accurately due to the long energy range of the changes induced by the field. Recently Yamamoto et al.6 presented some theoretical results in a 30nm InGaAsP QW. They neglect exciton effects and only consider contributions of heavy holes. Both approximations work quite well in the large well limit, but are less accurate for smaller QW's.\",\"PeriodicalId\":205579,\"journal\":{\"name\":\"Quantum Wells for Optics and Optoelectronics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Wells for Optics and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/qwoe.1989.pd5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Wells for Optics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/qwoe.1989.pd5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于量子受限斯塔克效应的光调制器的优越性能已经为人们所接受。在1.55μm光窗中,InGaAs和InGaAsP QW表现出更好的性能,这是光通信领域的一个重要研究方向。对于三元材料,发表了折射率数据1,并演示了InGaAs和InGaAsP QW在波导调制器s2和DBR激光器中的应用。近年来强调了在1.55μm处使用四元量子阱进行电光相位调制的优势。主要的兴趣点是额外的自由度,即InGaAsP组合。本文在理论基础上研究了在一定的应用领域限制下,寻找最大相位调制的最佳组成和最佳量子波尺寸的问题。量子阱中电场相关吸收的建模已经引起了人们的广泛关注。由于外加场引起的折射率变化的能量范围很长,因此很难精确地模拟。最近,Yamamoto等人6在30nm InGaAsP QW中提出了一些理论结果。它们忽略激子效应,只考虑重空穴的贡献。这两种近似方法在大井极限下都能很好地工作,但对于较小的量子阱就不太准确了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical optimisation of Electrooptical Phase Modulation in InGaAsP Quantumwells.
The superior performance of light modulators based on the quantum confined Stark effect has been accepted for some time. Many experimental and theoretical data were obtained for GaAs-AlGaAs QW and SL. In the 1.55μm optical window, which is of particular interest for optical communication purposes, InGaAs and InGaAsP QW give better performances. For the ternary material refractive index data were published1 and the use of InGaAs and InGaAsP QW's in waveguide modulators2 and DBR lasers3 was demonstrated. Recently the advantage of using quaternary quantum wells for electrooptic phase modulation at 1.55μm was stressed4. The main point of interest is the additional degree of freedom, namely the InGaAsP composition. The problem of finding the optimal composition together with the best possible QW size for maximal phase modulation, within certain restrictions for the applied field, is treated on a theoretical basis in this paper. The modeling of the electric field dependent absorption in QW’s has already obtained a lot of attention5. Refractive index changes under applied field are much more difficult to model accurately due to the long energy range of the changes induced by the field. Recently Yamamoto et al.6 presented some theoretical results in a 30nm InGaAsP QW. They neglect exciton effects and only consider contributions of heavy holes. Both approximations work quite well in the large well limit, but are less accurate for smaller QW's.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear Optical Properties of Quantum-Confined CdSe Microcrystallites Inducing normally forbidden transitions within the conduction band of GaAs quantum wells Monte Carlo Simulation of Femtosecond Spectroscopy in Semiconductor Heterostructures Temperature-Dependent Characteristics of GaAs/AlGaAs Multiple Quantum Well Optical Modulators Second-order intersubband nonlinear optical susceptibilities of asymmetric quantum well structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1