高温互连的热力学模拟和测量

K. Brinkfeldt, R. Amen, E. Adolfsson, P. Tegehall, P. Johander, D. Andersson
{"title":"高温互连的热力学模拟和测量","authors":"K. Brinkfeldt, R. Amen, E. Adolfsson, P. Tegehall, P. Johander, D. Andersson","doi":"10.1109/ESIME.2011.5765772","DOIUrl":null,"url":null,"abstract":"In order to place sensors or electronics in very high temperature environments, new materials and methods for interconnection are required. A comparative study between different electrical interconnection methods for very high operation temperatures (500 °C – 800 °C) is presented. Thermo-mechanical simulations and characterization of samples of the interconnection types during high temperature exposure are presented. The results of the thermo-mechanical simulations showed that stresses are low in a connection system based on liquid interconnection. This system, however, proved to be difficult to realize due to problems with oxides and sealing of the metallic liquid. Modeling of an interconnection based purely on mechanical pressure without any solder or metallic bond showed high stress. This was also confirmed during high temperature exposure where the connection failed. High stress was also predicted for an interconnection based on nano-Ag paste. The high temperature tests, however, showed promising results at 800 °C for over 100 hours.","PeriodicalId":115489,"journal":{"name":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Thermo-mechanical simulations and measurements on high temperature interconnections\",\"authors\":\"K. Brinkfeldt, R. Amen, E. Adolfsson, P. Tegehall, P. Johander, D. Andersson\",\"doi\":\"10.1109/ESIME.2011.5765772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to place sensors or electronics in very high temperature environments, new materials and methods for interconnection are required. A comparative study between different electrical interconnection methods for very high operation temperatures (500 °C – 800 °C) is presented. Thermo-mechanical simulations and characterization of samples of the interconnection types during high temperature exposure are presented. The results of the thermo-mechanical simulations showed that stresses are low in a connection system based on liquid interconnection. This system, however, proved to be difficult to realize due to problems with oxides and sealing of the metallic liquid. Modeling of an interconnection based purely on mechanical pressure without any solder or metallic bond showed high stress. This was also confirmed during high temperature exposure where the connection failed. High stress was also predicted for an interconnection based on nano-Ag paste. The high temperature tests, however, showed promising results at 800 °C for over 100 hours.\",\"PeriodicalId\":115489,\"journal\":{\"name\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESIME.2011.5765772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th Intl. Conf. on Thermal, Mechanical & Multi-Physics Simulation and Experiments in Microelectronics and Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2011.5765772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了将传感器或电子设备放置在非常高温的环境中,需要新的互连材料和方法。在非常高的工作温度(500°C - 800°C)下,对不同的电气互连方法进行了比较研究。介绍了高温暴露过程中各互连类型样品的热力学模拟和表征。热力学模拟结果表明,基于液体互连的连接系统应力较低。然而,由于氧化物和金属液体的密封问题,该系统难以实现。在没有任何焊料或金属键的情况下,纯粹基于机械压力的互连模型显示出高应力。这也证实了高温暴露时,连接失败。此外,还预测了基于纳米银浆的互连会产生高应力。然而,高温测试显示出在800°C下持续100多个小时的有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermo-mechanical simulations and measurements on high temperature interconnections
In order to place sensors or electronics in very high temperature environments, new materials and methods for interconnection are required. A comparative study between different electrical interconnection methods for very high operation temperatures (500 °C – 800 °C) is presented. Thermo-mechanical simulations and characterization of samples of the interconnection types during high temperature exposure are presented. The results of the thermo-mechanical simulations showed that stresses are low in a connection system based on liquid interconnection. This system, however, proved to be difficult to realize due to problems with oxides and sealing of the metallic liquid. Modeling of an interconnection based purely on mechanical pressure without any solder or metallic bond showed high stress. This was also confirmed during high temperature exposure where the connection failed. High stress was also predicted for an interconnection based on nano-Ag paste. The high temperature tests, however, showed promising results at 800 °C for over 100 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of metaheuristic algorithms for simulation based OPF computation Challenges of power electronic packaging and modeling Impact of VDMOS source metallization ageing in 3D FEM wire lift off modeling Assessment of thermo mechanical properties of crosslinked epoxy mesoscale approach — Preliminary results FEA study on electrical interconnects for a power QFN package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1