Rui Zhang, Zhaocheng Liu, Kexin Yang, Taizhi Liu, W. Cai, L. Milor
{"title":"FinFET SRAM单元的反设计","authors":"Rui Zhang, Zhaocheng Liu, Kexin Yang, Taizhi Liu, W. Cai, L. Milor","doi":"10.1109/IRPS45951.2020.9129530","DOIUrl":null,"url":null,"abstract":"A convenient method based on deep neural networks and an evolutionary algorithm is proposed for the inverse design of FinFET SRAM cells. Inverse design helps designers who have less device physics knowledge obtain cell configurations that provide the desired performance metrics under selected wearout conditions, such as a set specific stress time and use scenario that creates a specific activity level (duty cycle and transition rate). The cell configurations being considered consists of various process parameters, such as gate length and fin height, in the presence of variations due to process and wearout. The front-end mechanisms related to wearout include negative bias temperature instability (NBTI), hot carrier injection (HCI), and random telegraph noise (RTN). The process of inverse design is achieved quickly and at good accuracy.","PeriodicalId":116002,"journal":{"name":"2020 IEEE International Reliability Physics Symposium (IRPS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse Design of FinFET SRAM Cells\",\"authors\":\"Rui Zhang, Zhaocheng Liu, Kexin Yang, Taizhi Liu, W. Cai, L. Milor\",\"doi\":\"10.1109/IRPS45951.2020.9129530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convenient method based on deep neural networks and an evolutionary algorithm is proposed for the inverse design of FinFET SRAM cells. Inverse design helps designers who have less device physics knowledge obtain cell configurations that provide the desired performance metrics under selected wearout conditions, such as a set specific stress time and use scenario that creates a specific activity level (duty cycle and transition rate). The cell configurations being considered consists of various process parameters, such as gate length and fin height, in the presence of variations due to process and wearout. The front-end mechanisms related to wearout include negative bias temperature instability (NBTI), hot carrier injection (HCI), and random telegraph noise (RTN). The process of inverse design is achieved quickly and at good accuracy.\",\"PeriodicalId\":116002,\"journal\":{\"name\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Reliability Physics Symposium (IRPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRPS45951.2020.9129530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS45951.2020.9129530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A convenient method based on deep neural networks and an evolutionary algorithm is proposed for the inverse design of FinFET SRAM cells. Inverse design helps designers who have less device physics knowledge obtain cell configurations that provide the desired performance metrics under selected wearout conditions, such as a set specific stress time and use scenario that creates a specific activity level (duty cycle and transition rate). The cell configurations being considered consists of various process parameters, such as gate length and fin height, in the presence of variations due to process and wearout. The front-end mechanisms related to wearout include negative bias temperature instability (NBTI), hot carrier injection (HCI), and random telegraph noise (RTN). The process of inverse design is achieved quickly and at good accuracy.