{"title":"面向分布式寄存器体系结构的进程变化感知多场景高级综合算法","authors":"Koki Igawa, Youhua Shi, M. Yanagisawa, N. Togawa","doi":"10.1109/SOCC.2015.7406898","DOIUrl":null,"url":null,"abstract":"In order to tackle a process-variation problem, we can define several scenarios, each of which corresponds to a particular LSI behavior, such as a typical-case scenario and a worst-case scenario. By designing a single LSI chip which realizes multiple scenarios simultaneously, we can have a process-variation-tolerant LSI chip. In this paper, we propose a process-variation-aware low-latency and multi-scenario high-level synthesis algorithm targeting new distributed-register architectures, called HDR architectures. We assume two scenarios, a typical-case scenario and a worst-case scenario, and realize them onto a single chip. We first schedule/bind each of the scenarios independently. After that, we commonize the scheduling/binding results for the typical-case and worst-case scenarios and thus generate a commonized area-minimized floorplan result. Experimental results show that our algorithm reduces the latency of the typical-case scenario by up to 50% without increasing the latency of the worst-case scenario, compared with several existing methods.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A process-variation-aware multi-scenario high-level synthesis algorithm for distributed-register architectures\",\"authors\":\"Koki Igawa, Youhua Shi, M. Yanagisawa, N. Togawa\",\"doi\":\"10.1109/SOCC.2015.7406898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to tackle a process-variation problem, we can define several scenarios, each of which corresponds to a particular LSI behavior, such as a typical-case scenario and a worst-case scenario. By designing a single LSI chip which realizes multiple scenarios simultaneously, we can have a process-variation-tolerant LSI chip. In this paper, we propose a process-variation-aware low-latency and multi-scenario high-level synthesis algorithm targeting new distributed-register architectures, called HDR architectures. We assume two scenarios, a typical-case scenario and a worst-case scenario, and realize them onto a single chip. We first schedule/bind each of the scenarios independently. After that, we commonize the scheduling/binding results for the typical-case and worst-case scenarios and thus generate a commonized area-minimized floorplan result. Experimental results show that our algorithm reduces the latency of the typical-case scenario by up to 50% without increasing the latency of the worst-case scenario, compared with several existing methods.\",\"PeriodicalId\":329464,\"journal\":{\"name\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2015.7406898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A process-variation-aware multi-scenario high-level synthesis algorithm for distributed-register architectures
In order to tackle a process-variation problem, we can define several scenarios, each of which corresponds to a particular LSI behavior, such as a typical-case scenario and a worst-case scenario. By designing a single LSI chip which realizes multiple scenarios simultaneously, we can have a process-variation-tolerant LSI chip. In this paper, we propose a process-variation-aware low-latency and multi-scenario high-level synthesis algorithm targeting new distributed-register architectures, called HDR architectures. We assume two scenarios, a typical-case scenario and a worst-case scenario, and realize them onto a single chip. We first schedule/bind each of the scenarios independently. After that, we commonize the scheduling/binding results for the typical-case and worst-case scenarios and thus generate a commonized area-minimized floorplan result. Experimental results show that our algorithm reduces the latency of the typical-case scenario by up to 50% without increasing the latency of the worst-case scenario, compared with several existing methods.