湿态smt元件的研究与分析

Lukas Haas, F. Döpper, K. Schmidt, J. Franke, A. Reinhardt
{"title":"湿态smt元件的研究与分析","authors":"Lukas Haas, F. Döpper, K. Schmidt, J. Franke, A. Reinhardt","doi":"10.23919/empc53418.2021.9584942","DOIUrl":null,"url":null,"abstract":"One of the most challenging aspects of processing electronic parts is the abundance of influencing factors. These have a significant impact on the quality of the finished product. Particularly the affinity to embed moisture in the plastic matrix can lead to severe damage mechanisms. With a moisture gain of up to 0.5 percent by weight [1] delamination and the so-called “popcorn effect” may occur during reflow soldering [2]. This is due to the explosive vaporization and volume gain the embedded water experiences during the heating process. To prevent these failures the floor time has been established. It specifies the maximum amount of time a Surface Mount Device (SMD) can be exposed to certain conditions (floor life) before failures start to occur. After the floor life ends, time-consuming and costly preconditioning in a warm and dry atmosphere is necessary to restart the floor time. The Moisture Sensitivity Level (MSL) in combination with the JEDEC standard defines the exact conditions and times for preconditioning.The proposed article focuses on modeling cause-effect-relations between influence and target values to create a more efficient way to determine when preconditioning is necessary. A literature review of research papers and industry standards is used to determine the quality defining influence parameters. Transferring these insights into two simulation models, one based on the Fickian diffusion mechanism, the other on the two-stage Fickian diffusion, leads to a promising approach for concluding reversible and irreversible moisture diffusion into the SMD components.An experimental setup is determined using the derived dependence model. The experiments consist of defined loading and drying cycles of different samples of MSL 3 and 4 to quantify the moisture de- and absorbed by the part under defined conditions. Subsequently, several differently moisture-loaded parts are reflow soldered to recreate a variety of failure mechanisms. Which, in turn, are used to verify the critical moisture mass absorbed by the SMD-components","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies and Analyses of Moisture Conditioned SMT-Components\",\"authors\":\"Lukas Haas, F. Döpper, K. Schmidt, J. Franke, A. Reinhardt\",\"doi\":\"10.23919/empc53418.2021.9584942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most challenging aspects of processing electronic parts is the abundance of influencing factors. These have a significant impact on the quality of the finished product. Particularly the affinity to embed moisture in the plastic matrix can lead to severe damage mechanisms. With a moisture gain of up to 0.5 percent by weight [1] delamination and the so-called “popcorn effect” may occur during reflow soldering [2]. This is due to the explosive vaporization and volume gain the embedded water experiences during the heating process. To prevent these failures the floor time has been established. It specifies the maximum amount of time a Surface Mount Device (SMD) can be exposed to certain conditions (floor life) before failures start to occur. After the floor life ends, time-consuming and costly preconditioning in a warm and dry atmosphere is necessary to restart the floor time. The Moisture Sensitivity Level (MSL) in combination with the JEDEC standard defines the exact conditions and times for preconditioning.The proposed article focuses on modeling cause-effect-relations between influence and target values to create a more efficient way to determine when preconditioning is necessary. A literature review of research papers and industry standards is used to determine the quality defining influence parameters. Transferring these insights into two simulation models, one based on the Fickian diffusion mechanism, the other on the two-stage Fickian diffusion, leads to a promising approach for concluding reversible and irreversible moisture diffusion into the SMD components.An experimental setup is determined using the derived dependence model. The experiments consist of defined loading and drying cycles of different samples of MSL 3 and 4 to quantify the moisture de- and absorbed by the part under defined conditions. Subsequently, several differently moisture-loaded parts are reflow soldered to recreate a variety of failure mechanisms. Which, in turn, are used to verify the critical moisture mass absorbed by the SMD-components\",\"PeriodicalId\":348887,\"journal\":{\"name\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/empc53418.2021.9584942\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子零件加工中最具挑战性的一个方面是影响因素的丰富。这些对成品的质量有很大的影响。特别是在塑料基体中嵌入水分的亲和力会导致严重的损伤机制。在回流焊过程中,当水分增加到重量的0.5%时,可能会出现分层和所谓的“爆米花效应”。这是由于在加热过程中,埋入水经历了爆炸性汽化和体积增加。为了防止这些故障,已经建立了地板时间。它规定了表面贴装设备(SMD)在开始发生故障之前可以暴露在某些条件下的最大时间(地板寿命)。地板寿命结束后,需要在温暖干燥的环境中进行耗时且昂贵的预处理,以重新启动地板时间。湿度敏感等级(MSL)结合JEDEC标准定义了预处理的确切条件和时间。拟议的文章侧重于对影响和目标值之间的因果关系进行建模,以创建一种更有效的方法来确定何时需要预处理。通过对研究论文和行业标准的文献综述来确定质量定义影响参数。将这些见解转化为两个模拟模型,一个基于Fickian扩散机制,另一个基于两阶段Fickian扩散,可以得出SMD组件中可逆和不可逆水分扩散的有希望的方法。利用导出的依赖模型确定了实验装置。实验包括对msl3和msl4的不同样品进行规定的加载和干燥循环,以量化该部分在规定条件下的脱湿和吸湿。随后,几个不同的湿载荷部件被回流焊接,以重现各种失效机制。这反过来又用于验证smd组件吸收的临界水分质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Studies and Analyses of Moisture Conditioned SMT-Components
One of the most challenging aspects of processing electronic parts is the abundance of influencing factors. These have a significant impact on the quality of the finished product. Particularly the affinity to embed moisture in the plastic matrix can lead to severe damage mechanisms. With a moisture gain of up to 0.5 percent by weight [1] delamination and the so-called “popcorn effect” may occur during reflow soldering [2]. This is due to the explosive vaporization and volume gain the embedded water experiences during the heating process. To prevent these failures the floor time has been established. It specifies the maximum amount of time a Surface Mount Device (SMD) can be exposed to certain conditions (floor life) before failures start to occur. After the floor life ends, time-consuming and costly preconditioning in a warm and dry atmosphere is necessary to restart the floor time. The Moisture Sensitivity Level (MSL) in combination with the JEDEC standard defines the exact conditions and times for preconditioning.The proposed article focuses on modeling cause-effect-relations between influence and target values to create a more efficient way to determine when preconditioning is necessary. A literature review of research papers and industry standards is used to determine the quality defining influence parameters. Transferring these insights into two simulation models, one based on the Fickian diffusion mechanism, the other on the two-stage Fickian diffusion, leads to a promising approach for concluding reversible and irreversible moisture diffusion into the SMD components.An experimental setup is determined using the derived dependence model. The experiments consist of defined loading and drying cycles of different samples of MSL 3 and 4 to quantify the moisture de- and absorbed by the part under defined conditions. Subsequently, several differently moisture-loaded parts are reflow soldered to recreate a variety of failure mechanisms. Which, in turn, are used to verify the critical moisture mass absorbed by the SMD-components
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Throughput Optimization of a Sintering Die Attach Process Thermal Properties of Laser-induced Graphene Films Photothermally Scribed on Bare Polyimide Substrates Packaging Solution for RF SiP with on-top Integrated Antenna Development of a Quick Test for Conformal Coatings Properties of nano-composite SACX0307-(ZnO, TiO2) solders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1