半导体制造中提高良率的过程控制研究

Mun-Kyu Choi, Hunmo Kim
{"title":"半导体制造中提高良率的过程控制研究","authors":"Mun-Kyu Choi, Hunmo Kim","doi":"10.1109/SICE.1999.788727","DOIUrl":null,"url":null,"abstract":"We present the process analysis system that can analyze causes, like an expert, after processes. Also, the plasma etching process that affects yield is controlled using an artificial neural network to predict output before the process. In modeling, a method that uses history for input data is considered, it offers advantages in both learning and prediction capability. This research regards the critical dimension that is considerable in highly integrated circuits as the output variable of the model. Based on a model using this method, we propose an algorithm to analyze and control the effect of input variables for predicted defects. Both the weight of input variables and their historical trend are examined for this algorithm.","PeriodicalId":103164,"journal":{"name":"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study on process control to improve yield in semiconductor manufacturing\",\"authors\":\"Mun-Kyu Choi, Hunmo Kim\",\"doi\":\"10.1109/SICE.1999.788727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the process analysis system that can analyze causes, like an expert, after processes. Also, the plasma etching process that affects yield is controlled using an artificial neural network to predict output before the process. In modeling, a method that uses history for input data is considered, it offers advantages in both learning and prediction capability. This research regards the critical dimension that is considerable in highly integrated circuits as the output variable of the model. Based on a model using this method, we propose an algorithm to analyze and control the effect of input variables for predicted defects. Both the weight of input variables and their historical trend are examined for this algorithm.\",\"PeriodicalId\":103164,\"journal\":{\"name\":\"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.1999.788727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '99. Proceedings of the 38th SICE Annual Conference. International Session Papers (IEEE Cat. No.99TH8456)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1999.788727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了过程分析系统,可以像专家一样分析过程后的原因。同时,利用人工神经网络对影响成品率的等离子体刻蚀过程进行控制,在刻蚀过程开始前预测输出。在建模中,考虑了一种使用历史数据作为输入数据的方法,它在学习和预测能力方面都具有优势。本研究将高度集成电路中相当重要的临界维数作为模型的输出变量。在此模型的基础上,提出了一种算法来分析和控制输入变量对预测缺陷的影响。该算法对输入变量的权重及其历史趋势进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A study on process control to improve yield in semiconductor manufacturing
We present the process analysis system that can analyze causes, like an expert, after processes. Also, the plasma etching process that affects yield is controlled using an artificial neural network to predict output before the process. In modeling, a method that uses history for input data is considered, it offers advantages in both learning and prediction capability. This research regards the critical dimension that is considerable in highly integrated circuits as the output variable of the model. Based on a model using this method, we propose an algorithm to analyze and control the effect of input variables for predicted defects. Both the weight of input variables and their historical trend are examined for this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model reference feedback and PID control for interval plants A compiler design for IEC 1131-3 standard languages of programmable logic controllers Mass measurement based on the law of conservation of momentum Generation of robot control circuit using EHW approach Theoretical study and experiment on frequency characteristics of a probe microphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1