多假设卡尔曼滤波的随机进化模型

S. Handke, Joshua Gehlen
{"title":"多假设卡尔曼滤波的随机进化模型","authors":"S. Handke, Joshua Gehlen","doi":"10.1109/SDF.2019.8916630","DOIUrl":null,"url":null,"abstract":"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Evolution Model for Multi Hypothesis Kalman Filter\",\"authors\":\"S. Handke, Joshua Gehlen\",\"doi\":\"10.1109/SDF.2019.8916630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于多假设跟踪的高机动目标随机化方法。利用当前演化模型中的加速度范围参数来设计各种运动模型。该方法将该参数随机化,以覆盖更大范围的机动特性。仿真结果表明,该方法具有更可靠的航迹连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Randomized Evolution Model for Multi Hypothesis Kalman Filter
A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ACTIVE - Autonomous Car to Infrastructure Communication Mastering Adverse Environments Extended Object Tracking assisted Adaptive Clustering for Radar in Autonomous Driving Applications Multi-Model Bayesian Kriging for Urban Traffic State Prediction Computer Vision Methods for Automating High Temperature Steel Section Sizing in Thermal Images Comparison of Track to Track fusion methods for nonlinear process and measurement models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1