{"title":"多假设卡尔曼滤波的随机进化模型","authors":"S. Handke, Joshua Gehlen","doi":"10.1109/SDF.2019.8916630","DOIUrl":null,"url":null,"abstract":"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.","PeriodicalId":186196,"journal":{"name":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized Evolution Model for Multi Hypothesis Kalman Filter\",\"authors\":\"S. Handke, Joshua Gehlen\",\"doi\":\"10.1109/SDF.2019.8916630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.\",\"PeriodicalId\":186196,\"journal\":{\"name\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SDF.2019.8916630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2019.8916630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Randomized Evolution Model for Multi Hypothesis Kalman Filter
A new randomized approach for highly maneuvering targets based on multi hypothesis tracking is presented. The acceleration range - a parameter in current evolution models is used to design various motion models. The approach randomises this parameter to cover a wider range of maneuver characteristics. Simulation shows that the performance of the new method results in a more reliable track continuity.