研究密集矩阵反演蒙特卡罗代码的标度行为

J. Strassburg, V. Alexandrov
{"title":"研究密集矩阵反演蒙特卡罗代码的标度行为","authors":"J. Strassburg, V. Alexandrov","doi":"10.1145/2133173.2133187","DOIUrl":null,"url":null,"abstract":"With the latest developments in the area of advanced computer architectures, we are already seeing large-scale machines at petascale level and are faced with the exascale computing challenge. All these require scalability at system, algorithmic and mathematical model level. In particular, efficient scalable algorithms are required to bridge the performance gap. Being able to predict application demeanour, performance and scalability of currently used software on new supercomputers of different architectures, varying sizes, and utilising alternative ways of intercommunication, can be of great benefit for researchers as well as application developers. This paper is concerned with scaling characteristics of Monte Carlo based algorithms for matrix inversion. The algorithmic behaviour on large-scale systems will be predicted with the help of an extreme-scale high-performance computing (HPC) simulator.","PeriodicalId":259517,"journal":{"name":"ACM SIGPLAN Symposium on Scala","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating scaling behaviour of monte carlo codes for dense matrix inversion\",\"authors\":\"J. Strassburg, V. Alexandrov\",\"doi\":\"10.1145/2133173.2133187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the latest developments in the area of advanced computer architectures, we are already seeing large-scale machines at petascale level and are faced with the exascale computing challenge. All these require scalability at system, algorithmic and mathematical model level. In particular, efficient scalable algorithms are required to bridge the performance gap. Being able to predict application demeanour, performance and scalability of currently used software on new supercomputers of different architectures, varying sizes, and utilising alternative ways of intercommunication, can be of great benefit for researchers as well as application developers. This paper is concerned with scaling characteristics of Monte Carlo based algorithms for matrix inversion. The algorithmic behaviour on large-scale systems will be predicted with the help of an extreme-scale high-performance computing (HPC) simulator.\",\"PeriodicalId\":259517,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Scala\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Scala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2133173.2133187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Scala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2133173.2133187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着先进计算机体系结构领域的最新发展,我们已经看到了千万亿级的大型机器,并面临着百亿亿级计算的挑战。所有这些都需要在系统、算法和数学模型层面上的可扩展性。特别是,需要有效的可扩展算法来弥合性能差距。能够预测应用程序的行为、性能和当前使用的软件在不同架构、不同尺寸的新超级计算机上的可扩展性,并利用替代的互连方式,对研究人员和应用程序开发人员都有很大的好处。本文研究了基于蒙特卡罗的矩阵反演算法的标度特性。在超大规模高性能计算(HPC)模拟器的帮助下,将预测大规模系统上的算法行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating scaling behaviour of monte carlo codes for dense matrix inversion
With the latest developments in the area of advanced computer architectures, we are already seeing large-scale machines at petascale level and are faced with the exascale computing challenge. All these require scalability at system, algorithmic and mathematical model level. In particular, efficient scalable algorithms are required to bridge the performance gap. Being able to predict application demeanour, performance and scalability of currently used software on new supercomputers of different architectures, varying sizes, and utilising alternative ways of intercommunication, can be of great benefit for researchers as well as application developers. This paper is concerned with scaling characteristics of Monte Carlo based algorithms for matrix inversion. The algorithmic behaviour on large-scale systems will be predicted with the help of an extreme-scale high-performance computing (HPC) simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A scalable randomized least squares solver for dense overdetermined systems A parallel ensemble Kalman filter implementation based on modified Cholesky decomposition Mixed-precision block gram Schmidt orthogonalization Weighted dynamic scheduling with many parallelism grains for offloading of numerical workloads to multiple varied accelerators On efficient Monte Carlo preconditioners and hybrid Monte Carlo methods for linear algebra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1