X. Iturbe, D. Keymeulen, Emre Ozer, P. Yiu, D. Berisford, K. Hand, R. Carlson
{"title":"设计控制下一代空间探索飞行科学仪器的SoC","authors":"X. Iturbe, D. Keymeulen, Emre Ozer, P. Yiu, D. Berisford, K. Hand, R. Carlson","doi":"10.1109/SOCC.2015.7406899","DOIUrl":null,"url":null,"abstract":"SoC technology permits to integrate all the computational power required by next-generation space exploration flight science instruments on a single chip. This paper describes the Xilinx Zynq-based Advanced Processor for space EXploration SoC (APEX-SoC) that has been developed at the Jet Propulsion Laboratory (JPL) in collaboration with ARM. The paper discusses the APEX-SoC architecture and demonstrates its main capabilities when used to control JPL's Compositional InfraRed Imaging Spectrometer (CIRIS). As the CIRIS instrument is intended to explore harsh space environments, the paper also deals with the Radiation Hardened By Design (RHBD) features that have been implemented in the APEX-SoC.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Designing a SoC to control the next-generation space exploration flight science instruments\",\"authors\":\"X. Iturbe, D. Keymeulen, Emre Ozer, P. Yiu, D. Berisford, K. Hand, R. Carlson\",\"doi\":\"10.1109/SOCC.2015.7406899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SoC technology permits to integrate all the computational power required by next-generation space exploration flight science instruments on a single chip. This paper describes the Xilinx Zynq-based Advanced Processor for space EXploration SoC (APEX-SoC) that has been developed at the Jet Propulsion Laboratory (JPL) in collaboration with ARM. The paper discusses the APEX-SoC architecture and demonstrates its main capabilities when used to control JPL's Compositional InfraRed Imaging Spectrometer (CIRIS). As the CIRIS instrument is intended to explore harsh space environments, the paper also deals with the Radiation Hardened By Design (RHBD) features that have been implemented in the APEX-SoC.\",\"PeriodicalId\":329464,\"journal\":{\"name\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2015.7406899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a SoC to control the next-generation space exploration flight science instruments
SoC technology permits to integrate all the computational power required by next-generation space exploration flight science instruments on a single chip. This paper describes the Xilinx Zynq-based Advanced Processor for space EXploration SoC (APEX-SoC) that has been developed at the Jet Propulsion Laboratory (JPL) in collaboration with ARM. The paper discusses the APEX-SoC architecture and demonstrates its main capabilities when used to control JPL's Compositional InfraRed Imaging Spectrometer (CIRIS). As the CIRIS instrument is intended to explore harsh space environments, the paper also deals with the Radiation Hardened By Design (RHBD) features that have been implemented in the APEX-SoC.