拉曼与傅里叶红外互补振动光谱用于集成电路可靠性失效分析的实验与结果

Huang Yamin, H. Tan, D. Wang, J. Lam, Z. Mai
{"title":"拉曼与傅里叶红外互补振动光谱用于集成电路可靠性失效分析的实验与结果","authors":"Huang Yamin, H. Tan, D. Wang, J. Lam, Z. Mai","doi":"10.1109/IPFA.2014.6898161","DOIUrl":null,"url":null,"abstract":"Time-dependent dielectric breakdown (TDDB) of ultra-low-k materials is one of the most critical reliability issues in leading edge Cu/low-k technology due to the weak intrinsic breakdown strength of ultra-low-k materials as compared to that of SiO2 dielectrics. With continuous device dimension scaling, this problem is further exacerbated for Cu/ultra-low-k interconnects. There are different TDDB models proposed to address this issue, however, there is no direct evidence to get into the failure mechanism. The key technical reason is that the damage to the dielectric material properties is not able to be monitored during the TDDB test. In this paper, we will describe the experiments and the setup used to capture the dielectric bonding damage during the reliability test. Raman and FTIR complimentary vibrational spectroscopy were used to detect the dielectric bonding on the pattern wafer, which has historically been a challenge for current leading edge Cu/low k or ultra-low-k technologies due to the influence of the metal interconnects and the thin dielectric layer. From our experiments, we successfully detected the TDDB degradation behavior of ultra-low-k dielectric in Cu/ultra-low-k interconnects and found the intrinsic degradation of the ultra-low-k dielectric. Further study on the damaged structures with TEM analysis revealed that the Ta ions migrated from the Ta/TaN barrier bi-layer into the ultra-low-k dielectrics. In addition, no out-diffusion of Cu ions was observed in our TEM investigation on Cu/Ta/TaN/SiCOH structures.","PeriodicalId":409316,"journal":{"name":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experiments and results of Raman and FTIR complementary vibrational spectroscopy for IC reliability failure analysis\",\"authors\":\"Huang Yamin, H. Tan, D. Wang, J. Lam, Z. Mai\",\"doi\":\"10.1109/IPFA.2014.6898161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-dependent dielectric breakdown (TDDB) of ultra-low-k materials is one of the most critical reliability issues in leading edge Cu/low-k technology due to the weak intrinsic breakdown strength of ultra-low-k materials as compared to that of SiO2 dielectrics. With continuous device dimension scaling, this problem is further exacerbated for Cu/ultra-low-k interconnects. There are different TDDB models proposed to address this issue, however, there is no direct evidence to get into the failure mechanism. The key technical reason is that the damage to the dielectric material properties is not able to be monitored during the TDDB test. In this paper, we will describe the experiments and the setup used to capture the dielectric bonding damage during the reliability test. Raman and FTIR complimentary vibrational spectroscopy were used to detect the dielectric bonding on the pattern wafer, which has historically been a challenge for current leading edge Cu/low k or ultra-low-k technologies due to the influence of the metal interconnects and the thin dielectric layer. From our experiments, we successfully detected the TDDB degradation behavior of ultra-low-k dielectric in Cu/ultra-low-k interconnects and found the intrinsic degradation of the ultra-low-k dielectric. Further study on the damaged structures with TEM analysis revealed that the Ta ions migrated from the Ta/TaN barrier bi-layer into the ultra-low-k dielectrics. In addition, no out-diffusion of Cu ions was observed in our TEM investigation on Cu/Ta/TaN/SiCOH structures.\",\"PeriodicalId\":409316,\"journal\":{\"name\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2014.6898161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2014.6898161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

超低k材料的时间相关介质击穿(TDDB)是前沿Cu/低k技术中最关键的可靠性问题之一,因为超低k材料的固有击穿强度较SiO2介质弱。随着器件尺寸的不断扩大,Cu/超低k互连的问题进一步加剧。提出了不同的TDDB模型来解决这个问题,但是,没有直接的证据来进入失败机制。其关键技术原因是在TDDB试验中无法监测到介质材料性能的破坏情况。在本文中,我们将描述在可靠性测试中用于捕获介电键损伤的实验和设置。利用拉曼光谱和FTIR互补振动光谱来检测图案晶圆上的介电键合,由于金属互连和薄介电层的影响,这一直是当前领先的Cu/低k或超低k技术的挑战。通过实验,我们成功地检测了Cu/超低k互连中超低k介电介质的TDDB降解行为,并发现了超低k介电介质的内在降解。对损伤结构的TEM分析表明,Ta离子从Ta/TaN势垒双层迁移到超低k介电体中。此外,在Cu/Ta/TaN/SiCOH结构的透射电镜研究中,没有观察到Cu离子的外扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiments and results of Raman and FTIR complementary vibrational spectroscopy for IC reliability failure analysis
Time-dependent dielectric breakdown (TDDB) of ultra-low-k materials is one of the most critical reliability issues in leading edge Cu/low-k technology due to the weak intrinsic breakdown strength of ultra-low-k materials as compared to that of SiO2 dielectrics. With continuous device dimension scaling, this problem is further exacerbated for Cu/ultra-low-k interconnects. There are different TDDB models proposed to address this issue, however, there is no direct evidence to get into the failure mechanism. The key technical reason is that the damage to the dielectric material properties is not able to be monitored during the TDDB test. In this paper, we will describe the experiments and the setup used to capture the dielectric bonding damage during the reliability test. Raman and FTIR complimentary vibrational spectroscopy were used to detect the dielectric bonding on the pattern wafer, which has historically been a challenge for current leading edge Cu/low k or ultra-low-k technologies due to the influence of the metal interconnects and the thin dielectric layer. From our experiments, we successfully detected the TDDB degradation behavior of ultra-low-k dielectric in Cu/ultra-low-k interconnects and found the intrinsic degradation of the ultra-low-k dielectric. Further study on the damaged structures with TEM analysis revealed that the Ta ions migrated from the Ta/TaN barrier bi-layer into the ultra-low-k dielectrics. In addition, no out-diffusion of Cu ions was observed in our TEM investigation on Cu/Ta/TaN/SiCOH structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-chip device and circuit diagnostics on advanced technology nodes by nanoprobing Study and mechanism of static scanning laser fault isolation on embed SRAM function fail Detailed package failure analysis on short failures after high temperature storage Hot carrier injection on back biasing double-gate FinFET with 10 and 25-nm fin width Gate oxide rupture localization by photon emission microscopy with the combination of Lock-in IR-OBIRCH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1