使用数据立方体分析对机器学习结果进行可视化探索

HILDA '16 Pub Date : 2016-06-26 DOI:10.1145/2939502.2939503
Minsuk Kahng, Dezhi Fang, Duen Horng Chau
{"title":"使用数据立方体分析对机器学习结果进行可视化探索","authors":"Minsuk Kahng, Dezhi Fang, Duen Horng Chau","doi":"10.1145/2939502.2939503","DOIUrl":null,"url":null,"abstract":"As complex machine learning systems become more widely adopted, it becomes increasingly challenging for users to understand models or interpret the results generated from the models. We present our ongoing work on developing interactive and visual approaches for exploring and understanding machine learning results using data cube analysis. We propose MLCube, a data cube inspired framework that enables users to define instance subsets using feature conditions and computes aggregate statistics and evaluation metrics over the subsets. We also design MLCube Explorer, an interactive visualization tool for comparing models' performances over the subsets. Users can interactively specify operations, such as drilling down to specific instance subsets, to perform more in-depth exploration. Through a usage scenario, we demonstrate how MLCube Explorer works with a public advertisement click log data set, to help a user build new advertisement click prediction models that advance over an existing model.","PeriodicalId":356971,"journal":{"name":"HILDA '16","volume":"71 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Visual exploration of machine learning results using data cube analysis\",\"authors\":\"Minsuk Kahng, Dezhi Fang, Duen Horng Chau\",\"doi\":\"10.1145/2939502.2939503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As complex machine learning systems become more widely adopted, it becomes increasingly challenging for users to understand models or interpret the results generated from the models. We present our ongoing work on developing interactive and visual approaches for exploring and understanding machine learning results using data cube analysis. We propose MLCube, a data cube inspired framework that enables users to define instance subsets using feature conditions and computes aggregate statistics and evaluation metrics over the subsets. We also design MLCube Explorer, an interactive visualization tool for comparing models' performances over the subsets. Users can interactively specify operations, such as drilling down to specific instance subsets, to perform more in-depth exploration. Through a usage scenario, we demonstrate how MLCube Explorer works with a public advertisement click log data set, to help a user build new advertisement click prediction models that advance over an existing model.\",\"PeriodicalId\":356971,\"journal\":{\"name\":\"HILDA '16\",\"volume\":\"71 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HILDA '16\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2939502.2939503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HILDA '16","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939502.2939503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

随着复杂的机器学习系统被越来越广泛地采用,用户理解模型或解释模型生成的结果变得越来越具有挑战性。我们介绍了我们正在进行的工作,开发交互式和可视化的方法来探索和理解使用数据立方体分析的机器学习结果。我们提出了MLCube,这是一个受数据立方体启发的框架,它使用户能够使用特征条件定义实例子集,并计算子集上的汇总统计信息和评估指标。我们还设计了MLCube Explorer,这是一个用于在子集上比较模型性能的交互式可视化工具。用户可以交互式地指定操作,例如向下钻取到特定的实例子集,以执行更深入的探索。通过一个使用场景,我们演示了MLCube Explorer如何处理公共广告点击日志数据集,以帮助用户构建新的广告点击预测模型,这些模型可以在现有模型之上进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual exploration of machine learning results using data cube analysis
As complex machine learning systems become more widely adopted, it becomes increasingly challenging for users to understand models or interpret the results generated from the models. We present our ongoing work on developing interactive and visual approaches for exploring and understanding machine learning results using data cube analysis. We propose MLCube, a data cube inspired framework that enables users to define instance subsets using feature conditions and computes aggregate statistics and evaluation metrics over the subsets. We also design MLCube Explorer, an interactive visualization tool for comparing models' performances over the subsets. Users can interactively specify operations, such as drilling down to specific instance subsets, to perform more in-depth exploration. Through a usage scenario, we demonstrate how MLCube Explorer works with a public advertisement click log data set, to help a user build new advertisement click prediction models that advance over an existing model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VisTrees: fast indexes for interactive data exploration PFunk-H: approximate query processing using perceptual models Towards reliable interactive data cleaning: a user survey and recommendations ModelDB: a system for machine learning model management TrendQuery: a system for interactive exploration of trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1