{"title":"硅干蚀刻过程中等离子体诱导损伤的建模","authors":"Tobias Reiter, X. Klemenschits, L. Filipovic","doi":"10.1109/IIRW56459.2022.10032764","DOIUrl":null,"url":null,"abstract":"A novel framework for the simulation of plasma-induced damage based on an adapted binary collision model is presented. The presented approach allows for the physical simulation of plasma damage during transient dry etch process simulations. The developed model is applied to two different substrate geometries, capturing plasma-induced damage caused by ion bombardment throughout the transient etch simulation. A detailed comparison to experimental data shows that even this simple collision model produces accurate results and thus provides a description of complex damage profiles for the entire duration of the processing step.","PeriodicalId":446436,"journal":{"name":"2022 IEEE International Integrated Reliability Workshop (IIRW)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Plasma-Induced Damage During the Dry Etching of Silicon\",\"authors\":\"Tobias Reiter, X. Klemenschits, L. Filipovic\",\"doi\":\"10.1109/IIRW56459.2022.10032764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel framework for the simulation of plasma-induced damage based on an adapted binary collision model is presented. The presented approach allows for the physical simulation of plasma damage during transient dry etch process simulations. The developed model is applied to two different substrate geometries, capturing plasma-induced damage caused by ion bombardment throughout the transient etch simulation. A detailed comparison to experimental data shows that even this simple collision model produces accurate results and thus provides a description of complex damage profiles for the entire duration of the processing step.\",\"PeriodicalId\":446436,\"journal\":{\"name\":\"2022 IEEE International Integrated Reliability Workshop (IIRW)\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Integrated Reliability Workshop (IIRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIRW56459.2022.10032764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Integrated Reliability Workshop (IIRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIRW56459.2022.10032764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Plasma-Induced Damage During the Dry Etching of Silicon
A novel framework for the simulation of plasma-induced damage based on an adapted binary collision model is presented. The presented approach allows for the physical simulation of plasma damage during transient dry etch process simulations. The developed model is applied to two different substrate geometries, capturing plasma-induced damage caused by ion bombardment throughout the transient etch simulation. A detailed comparison to experimental data shows that even this simple collision model produces accurate results and thus provides a description of complex damage profiles for the entire duration of the processing step.