碳化硅半桥功率模块的热优化

G. Moreno, J. Major, D. DeVoto, F. Khan, S. Narumanchi, Xuhui Feng, P. Paret
{"title":"碳化硅半桥功率模块的热优化","authors":"G. Moreno, J. Major, D. DeVoto, F. Khan, S. Narumanchi, Xuhui Feng, P. Paret","doi":"10.1115/ipack2022-97283","DOIUrl":null,"url":null,"abstract":"\n This project describes the modeling process to design the packaging and heat exchanger for a half-bridge wide-bandgap (WBG) power semiconductor module. The module uses two silicon carbide, metal-oxide-semiconductor field-effect transistor (MOSFET) devices per switch position that are soldered to an aluminum nitride, direct-bond copper (DBC) substrate. A baseplate cooling configuration (e.g., no thermal grease) is used along with a water-ethylene glycol, jet-impingement-style heat exchanger. The heat exchanger was designed to be fabricated using prototyping equipment from the National Renewable Energy Laboratory, complies with automotive standards (for minimal channel sizes, flow rates, and coolant), and considers reliability aspects (i.e., erosion/corrosion). Device-scale computational fluid dynamics (CFD) is used first to design the slot jet impingement cooling configuration and compute the effective heat transfer coefficient (HTC) of the concept. The computed HTCs are then used as boundary conditions for a finite element study to optimize the package geometry (e.g., device layout and baseplate thickness) to minimize thermal resistance and minimize temperature variation between the module’s four devices. Finally, a fluid manifold is designed to generate the slot jets and cool the devices. Module-scale CFD predicts a relatively low junction-to-fluid thermal resistance of 16.7 mm2·K/W, a 1.4°C temperature variation between devices, and a total pressure drop of 5,860 Pa (0.85 psi) for the design. The thermal resistance of the module design is about 67% lower than the 2015 BMW i3 power electronics/modules thermal resistance.","PeriodicalId":117260,"journal":{"name":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","volume":"685 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Thermal Optimization of a Silicon Carbide, Half-Bridge Power Module\",\"authors\":\"G. Moreno, J. Major, D. DeVoto, F. Khan, S. Narumanchi, Xuhui Feng, P. Paret\",\"doi\":\"10.1115/ipack2022-97283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This project describes the modeling process to design the packaging and heat exchanger for a half-bridge wide-bandgap (WBG) power semiconductor module. The module uses two silicon carbide, metal-oxide-semiconductor field-effect transistor (MOSFET) devices per switch position that are soldered to an aluminum nitride, direct-bond copper (DBC) substrate. A baseplate cooling configuration (e.g., no thermal grease) is used along with a water-ethylene glycol, jet-impingement-style heat exchanger. The heat exchanger was designed to be fabricated using prototyping equipment from the National Renewable Energy Laboratory, complies with automotive standards (for minimal channel sizes, flow rates, and coolant), and considers reliability aspects (i.e., erosion/corrosion). Device-scale computational fluid dynamics (CFD) is used first to design the slot jet impingement cooling configuration and compute the effective heat transfer coefficient (HTC) of the concept. The computed HTCs are then used as boundary conditions for a finite element study to optimize the package geometry (e.g., device layout and baseplate thickness) to minimize thermal resistance and minimize temperature variation between the module’s four devices. Finally, a fluid manifold is designed to generate the slot jets and cool the devices. Module-scale CFD predicts a relatively low junction-to-fluid thermal resistance of 16.7 mm2·K/W, a 1.4°C temperature variation between devices, and a total pressure drop of 5,860 Pa (0.85 psi) for the design. The thermal resistance of the module design is about 67% lower than the 2015 BMW i3 power electronics/modules thermal resistance.\",\"PeriodicalId\":117260,\"journal\":{\"name\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"volume\":\"685 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ipack2022-97283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ipack2022-97283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本课题描述了半桥宽带隙(WBG)功率半导体模块的封装和热交换器的建模过程。该模块在每个开关位置使用两个碳化硅,金属氧化物半导体场效应晶体管(MOSFET)器件,焊接到氮化铝,直接键合铜(DBC)衬底上。底板冷却配置(例如,无导热油脂)与水-乙二醇射流撞击式热交换器一起使用。热交换器的设计是使用国家可再生能源实验室的原型设备制造的,符合汽车标准(最小通道尺寸,流速和冷却剂),并考虑可靠性方面(即侵蚀/腐蚀)。首先利用设备级计算流体力学(CFD)设计了槽射流冲击冷却构型,并计算了该概念的有效传热系数(HTC)。然后,计算出的htc用作有限元研究的边界条件,以优化封装几何形状(例如,器件布局和底板厚度),以最小化热阻,并最小化模块四个器件之间的温度变化。最后,设计了一个流体歧管来产生槽射流并冷却设备。模块规模的CFD预测,该设计的结液热阻相对较低,为16.7 mm2·K/W,器件之间的温度变化为1.4°C,总压降为5,860 Pa (0.85 psi)。该模块设计的热阻比2015款BMW i3电力电子/模块热阻降低约67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Optimization of a Silicon Carbide, Half-Bridge Power Module
This project describes the modeling process to design the packaging and heat exchanger for a half-bridge wide-bandgap (WBG) power semiconductor module. The module uses two silicon carbide, metal-oxide-semiconductor field-effect transistor (MOSFET) devices per switch position that are soldered to an aluminum nitride, direct-bond copper (DBC) substrate. A baseplate cooling configuration (e.g., no thermal grease) is used along with a water-ethylene glycol, jet-impingement-style heat exchanger. The heat exchanger was designed to be fabricated using prototyping equipment from the National Renewable Energy Laboratory, complies with automotive standards (for minimal channel sizes, flow rates, and coolant), and considers reliability aspects (i.e., erosion/corrosion). Device-scale computational fluid dynamics (CFD) is used first to design the slot jet impingement cooling configuration and compute the effective heat transfer coefficient (HTC) of the concept. The computed HTCs are then used as boundary conditions for a finite element study to optimize the package geometry (e.g., device layout and baseplate thickness) to minimize thermal resistance and minimize temperature variation between the module’s four devices. Finally, a fluid manifold is designed to generate the slot jets and cool the devices. Module-scale CFD predicts a relatively low junction-to-fluid thermal resistance of 16.7 mm2·K/W, a 1.4°C temperature variation between devices, and a total pressure drop of 5,860 Pa (0.85 psi) for the design. The thermal resistance of the module design is about 67% lower than the 2015 BMW i3 power electronics/modules thermal resistance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI/ML Applications for Thermally Aware SoC Designs Effects of Mechanical Cycling Induced Damage on the Creep Response of SAC305 Solder A Study on Parameters That Impact the Thermal Fatigue Life of BGA Solder Joints Experimental Investigation of the Impact of Improved Ducting and Chassis Re-Design of a Hybrid-Cooled Server Electro-Chemical Migration in Aerosol-Jet Printed Electronics Using Temperature-Humidity and Water Droplet Testing Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1