{"title":"毫米波SiGe堆叠e类功率放大器的分析、设计与实现","authors":"K. Datta, J. Roderick, H. Hashemi","doi":"10.1109/RFIC.2013.6569581","DOIUrl":null,"url":null,"abstract":"Design equations and performance limits of stacked Class-E power amplifiers at mm-waves, including the limitations imposed by device parasitics, are presented in this paper. As a proof of concept of this parasitic aware mm-wave Class-E design methodology and to demonstrate the beyond BVCEO Class-E operation in a stacked architecture at mm-wave frequencies, a Q-band, single ended, two-stage, double-stacked, Class-E power amplifier is designed in a 0.13 μm SiGe HBT BiCMOS process. The measured performance of the fabricated chip show 23.4 dBm maximum output power at 34.9% peak power added efficiency (PAE), and 14.6 dB of power gain across 5 GHz centered around 41 GHz for a supply voltage of 4 V. The total chip area including the pads is 0.8 mm × 1.28 mm.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Analysis, design and implementation of mm-Wave SiGe stacked Class-E power amplifiers\",\"authors\":\"K. Datta, J. Roderick, H. Hashemi\",\"doi\":\"10.1109/RFIC.2013.6569581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design equations and performance limits of stacked Class-E power amplifiers at mm-waves, including the limitations imposed by device parasitics, are presented in this paper. As a proof of concept of this parasitic aware mm-wave Class-E design methodology and to demonstrate the beyond BVCEO Class-E operation in a stacked architecture at mm-wave frequencies, a Q-band, single ended, two-stage, double-stacked, Class-E power amplifier is designed in a 0.13 μm SiGe HBT BiCMOS process. The measured performance of the fabricated chip show 23.4 dBm maximum output power at 34.9% peak power added efficiency (PAE), and 14.6 dB of power gain across 5 GHz centered around 41 GHz for a supply voltage of 4 V. The total chip area including the pads is 0.8 mm × 1.28 mm.\",\"PeriodicalId\":203521,\"journal\":{\"name\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2013.6569581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis, design and implementation of mm-Wave SiGe stacked Class-E power amplifiers
Design equations and performance limits of stacked Class-E power amplifiers at mm-waves, including the limitations imposed by device parasitics, are presented in this paper. As a proof of concept of this parasitic aware mm-wave Class-E design methodology and to demonstrate the beyond BVCEO Class-E operation in a stacked architecture at mm-wave frequencies, a Q-band, single ended, two-stage, double-stacked, Class-E power amplifier is designed in a 0.13 μm SiGe HBT BiCMOS process. The measured performance of the fabricated chip show 23.4 dBm maximum output power at 34.9% peak power added efficiency (PAE), and 14.6 dB of power gain across 5 GHz centered around 41 GHz for a supply voltage of 4 V. The total chip area including the pads is 0.8 mm × 1.28 mm.