X. Liang, Chuan Zhang, Menghui Xu, Shunqing Zhang, X. You
{"title":"一种高效的随机列表逐次对消解码器","authors":"X. Liang, Chuan Zhang, Menghui Xu, Shunqing Zhang, X. You","doi":"10.1109/SOCC.2015.7406997","DOIUrl":null,"url":null,"abstract":"Representing continuous values by streams of random binary bits, stochastic decoding has shown advantages in both hardware efficiency and fault tolerance, therefore has been widely adopted by iterative decoding of error correction codes such as low-density parity-check (LDPC) codes and so on. Recently, polar codes, the first codes that can provably achieve the capacity of symmetric binary-input discrete memoryless channels (B-DMCs), have drawn a lot of attentions from both academia and industry. Although, polar codes with list successive cancellation (SC) decoding can outperform several best-known LDPC codes even within high error-rate regions, the linearly increasing hardware complexity makes its efficient implementation difficult. To this end, the stochastic list SC polar decoding algorithm is proposed in this paper to provide a good tradeoff between performance and complexity. In order to increase the decoding performance of stochastic list SC polar decoder, doubling probability approach is presented. The corresponding hardware architecture is also given. The approximate doubling approach is employed to facilitate the efficient implementation. Implementation results have shown that the proposed stochastic list SC polar decoder can achieve a good trade-off between performance and complexity.","PeriodicalId":329464,"journal":{"name":"2015 28th IEEE International System-on-Chip Conference (SOCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Efficient stochastic list successive cancellation decoder for polar codes\",\"authors\":\"X. Liang, Chuan Zhang, Menghui Xu, Shunqing Zhang, X. You\",\"doi\":\"10.1109/SOCC.2015.7406997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representing continuous values by streams of random binary bits, stochastic decoding has shown advantages in both hardware efficiency and fault tolerance, therefore has been widely adopted by iterative decoding of error correction codes such as low-density parity-check (LDPC) codes and so on. Recently, polar codes, the first codes that can provably achieve the capacity of symmetric binary-input discrete memoryless channels (B-DMCs), have drawn a lot of attentions from both academia and industry. Although, polar codes with list successive cancellation (SC) decoding can outperform several best-known LDPC codes even within high error-rate regions, the linearly increasing hardware complexity makes its efficient implementation difficult. To this end, the stochastic list SC polar decoding algorithm is proposed in this paper to provide a good tradeoff between performance and complexity. In order to increase the decoding performance of stochastic list SC polar decoder, doubling probability approach is presented. The corresponding hardware architecture is also given. The approximate doubling approach is employed to facilitate the efficient implementation. Implementation results have shown that the proposed stochastic list SC polar decoder can achieve a good trade-off between performance and complexity.\",\"PeriodicalId\":329464,\"journal\":{\"name\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2015.7406997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2015.7406997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient stochastic list successive cancellation decoder for polar codes
Representing continuous values by streams of random binary bits, stochastic decoding has shown advantages in both hardware efficiency and fault tolerance, therefore has been widely adopted by iterative decoding of error correction codes such as low-density parity-check (LDPC) codes and so on. Recently, polar codes, the first codes that can provably achieve the capacity of symmetric binary-input discrete memoryless channels (B-DMCs), have drawn a lot of attentions from both academia and industry. Although, polar codes with list successive cancellation (SC) decoding can outperform several best-known LDPC codes even within high error-rate regions, the linearly increasing hardware complexity makes its efficient implementation difficult. To this end, the stochastic list SC polar decoding algorithm is proposed in this paper to provide a good tradeoff between performance and complexity. In order to increase the decoding performance of stochastic list SC polar decoder, doubling probability approach is presented. The corresponding hardware architecture is also given. The approximate doubling approach is employed to facilitate the efficient implementation. Implementation results have shown that the proposed stochastic list SC polar decoder can achieve a good trade-off between performance and complexity.