{"title":"砷注入和闪光灯退火形成锗浅结","authors":"K. Osada, T. Fukunaga, K. Shibahara","doi":"10.1109/VTSA.2009.5159271","DOIUrl":null,"url":null,"abstract":"Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":"57 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ge shallow junction formation by As implantation and flash lamp annealing\",\"authors\":\"K. Osada, T. Fukunaga, K. Shibahara\",\"doi\":\"10.1109/VTSA.2009.5159271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.\",\"PeriodicalId\":309622,\"journal\":{\"name\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"volume\":\"57 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTSA.2009.5159271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ge shallow junction formation by As implantation and flash lamp annealing
Shallow, about 20 nm, depth n+/p junction of Ge was successfully fabricated by As+ implantation and FLA. Since the junction depth was limited by implantation energy, much shallower junction would be fabricated by reducing the energy. High potential of arsenic as a dopant was clearly demonstrated, although FLA parameters were not optimized yet. Since SPE retardation was found in the specimens with PAI, other channeling suppression technique should be found.