银合金线键合装置的解封装

F. Kerisit, M. J. Lefevre, B. Domengès, W. Prellier, Michael Obein
{"title":"银合金线键合装置的解封装","authors":"F. Kerisit, M. J. Lefevre, B. Domengès, W. Prellier, Michael Obein","doi":"10.1109/IPFA.2014.6898187","DOIUrl":null,"url":null,"abstract":"In order to reduce costs and improve the bonding process, silver has been recently introduced as an alternative to common bonding wire metals (gold, aluminum, copper), leading to new failure analysis issues. This study compares the efficiency of wet and dry chemistries for decapsulation on three Ag-based alloy wires. Introduction New developments of silver alloy bonding wire have emphasized specific problems due to silver alloy properties. Whereas this new type of wiring materials seemed to fulfill most challenges, like physical properties and reliability [1,2], it was suggested that epoxy molding compound (EMC) should be adapted in order to ease decapsulation[3]. Indeed, afterthe packaging industry moved from gold to copper wires, the failure analysis community had to come up with new decapsulation techniques [4,5]. Again, a new type of bonding will raise new problems of decapsulation. Furthermore, people facing failure analysis cases do not always have all required information on the type of EMC and the true composition of the bonding wires. Twomajor techniques of decapsulation regarding wirebonded devices are known: wet (acid) and dry etching (plasma). LASER ablation or milling are used for preopening, This study will compare the capabilities of these techniques on three different types of Ag-based wiring integrated circuits(IC).","PeriodicalId":409316,"journal":{"name":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decapsulation of silver-alloy wire-bonded devices\",\"authors\":\"F. Kerisit, M. J. Lefevre, B. Domengès, W. Prellier, Michael Obein\",\"doi\":\"10.1109/IPFA.2014.6898187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reduce costs and improve the bonding process, silver has been recently introduced as an alternative to common bonding wire metals (gold, aluminum, copper), leading to new failure analysis issues. This study compares the efficiency of wet and dry chemistries for decapsulation on three Ag-based alloy wires. Introduction New developments of silver alloy bonding wire have emphasized specific problems due to silver alloy properties. Whereas this new type of wiring materials seemed to fulfill most challenges, like physical properties and reliability [1,2], it was suggested that epoxy molding compound (EMC) should be adapted in order to ease decapsulation[3]. Indeed, afterthe packaging industry moved from gold to copper wires, the failure analysis community had to come up with new decapsulation techniques [4,5]. Again, a new type of bonding will raise new problems of decapsulation. Furthermore, people facing failure analysis cases do not always have all required information on the type of EMC and the true composition of the bonding wires. Twomajor techniques of decapsulation regarding wirebonded devices are known: wet (acid) and dry etching (plasma). LASER ablation or milling are used for preopening, This study will compare the capabilities of these techniques on three different types of Ag-based wiring integrated circuits(IC).\",\"PeriodicalId\":409316,\"journal\":{\"name\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2014.6898187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2014.6898187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了降低成本和改进键合工艺,最近引入了银作为普通键合线金属(金、铝、铜)的替代品,这导致了新的失效分析问题。本研究比较了湿法和干法在三种银基合金丝上脱封的效率。银合金焊丝的新发展强调了由于银合金的特性而引起的特殊问题。尽管这种新型布线材料似乎满足了大多数挑战,如物理性能和可靠性[1,2],但有人建议应采用环氧成型化合物(EMC),以减轻解封装[3]。事实上,在包装行业从金线转向铜线之后,失效分析界不得不提出新的解封装技术[4,5]。同样,一种新型的键合会带来新的解封装问题。此外,面对故障分析案例的人们并不总是拥有有关电磁兼容类型和键合线真实组成的所有必要信息。关于线键器件的两种主要解封装技术是已知的:湿(酸)和干(等离子)蚀刻。激光烧蚀或铣削用于预开孔,本研究将比较这些技术在三种不同类型的银基布线集成电路(IC)上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decapsulation of silver-alloy wire-bonded devices
In order to reduce costs and improve the bonding process, silver has been recently introduced as an alternative to common bonding wire metals (gold, aluminum, copper), leading to new failure analysis issues. This study compares the efficiency of wet and dry chemistries for decapsulation on three Ag-based alloy wires. Introduction New developments of silver alloy bonding wire have emphasized specific problems due to silver alloy properties. Whereas this new type of wiring materials seemed to fulfill most challenges, like physical properties and reliability [1,2], it was suggested that epoxy molding compound (EMC) should be adapted in order to ease decapsulation[3]. Indeed, afterthe packaging industry moved from gold to copper wires, the failure analysis community had to come up with new decapsulation techniques [4,5]. Again, a new type of bonding will raise new problems of decapsulation. Furthermore, people facing failure analysis cases do not always have all required information on the type of EMC and the true composition of the bonding wires. Twomajor techniques of decapsulation regarding wirebonded devices are known: wet (acid) and dry etching (plasma). LASER ablation or milling are used for preopening, This study will compare the capabilities of these techniques on three different types of Ag-based wiring integrated circuits(IC).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-chip device and circuit diagnostics on advanced technology nodes by nanoprobing Study and mechanism of static scanning laser fault isolation on embed SRAM function fail Detailed package failure analysis on short failures after high temperature storage Hot carrier injection on back biasing double-gate FinFET with 10 and 25-nm fin width Gate oxide rupture localization by photon emission microscopy with the combination of Lock-in IR-OBIRCH
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1