6.3用于移动和可穿戴设备的45.5μW 15fps常亮CMOS图像传感器

Jaehyuk Choi, Jungsoon Shin, Dongwu Kang, Du-sik Park
{"title":"6.3用于移动和可穿戴设备的45.5μW 15fps常亮CMOS图像传感器","authors":"Jaehyuk Choi, Jungsoon Shin, Dongwu Kang, Du-sik Park","doi":"10.1109/ISSCC.2015.7062952","DOIUrl":null,"url":null,"abstract":"Most mobile devices embed a CMOS image sensor (CIS) for capturing images. In addition, a variety of sensors such as proximity, ambient light, and fingerprint sensors are integrated for device control. The integration of multiple sensors in a device requires significant power consumption, area, and cost. In contrast to multiple sensors, an always-on CIS enables advanced smart sensing, including gesture sensing, face recognition, eye tracking, and so on. Smart sensing using a CIS offers a variety of user interfaces and experiences such as touch-less control, authentication, gaming, and object recognition for the Internet of Things (IOT). A major drawback of a CIS in mobile devices is that it consumes power greater than 50mW [1], and this is not feasible for always-on sensing that is required to function with the limited energy available from the device's battery. Moreover, power reduction in a CIS causes image degradation owing to reduced SNR, which is not acceptable for capturing high-quality images. Many low-power CISs have been reported [2-3]. However, they are inadequate for use as high-resolution sensors because of the requirement of additional in-pixel circuits for device operation at low supply voltages.","PeriodicalId":188403,"journal":{"name":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"6.3 A 45.5μW 15fps always-on CMOS image sensor for mobile and wearable devices\",\"authors\":\"Jaehyuk Choi, Jungsoon Shin, Dongwu Kang, Du-sik Park\",\"doi\":\"10.1109/ISSCC.2015.7062952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most mobile devices embed a CMOS image sensor (CIS) for capturing images. In addition, a variety of sensors such as proximity, ambient light, and fingerprint sensors are integrated for device control. The integration of multiple sensors in a device requires significant power consumption, area, and cost. In contrast to multiple sensors, an always-on CIS enables advanced smart sensing, including gesture sensing, face recognition, eye tracking, and so on. Smart sensing using a CIS offers a variety of user interfaces and experiences such as touch-less control, authentication, gaming, and object recognition for the Internet of Things (IOT). A major drawback of a CIS in mobile devices is that it consumes power greater than 50mW [1], and this is not feasible for always-on sensing that is required to function with the limited energy available from the device's battery. Moreover, power reduction in a CIS causes image degradation owing to reduced SNR, which is not acceptable for capturing high-quality images. Many low-power CISs have been reported [2-3]. However, they are inadequate for use as high-resolution sensors because of the requirement of additional in-pixel circuits for device operation at low supply voltages.\",\"PeriodicalId\":188403,\"journal\":{\"name\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2015.7062952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2015.7062952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大多数移动设备嵌入CMOS图像传感器(CIS)来捕获图像。此外,各种传感器,如接近,环境光,指纹传感器集成为设备控制。在一个设备中集成多个传感器需要大量的功耗、面积和成本。与多个传感器相比,始终在线的CIS支持高级智能传感,包括手势传感、面部识别、眼动追踪等。使用CIS的智能传感提供各种用户界面和体验,如非触摸控制,身份验证,游戏和物联网(IOT)的对象识别。移动设备中CIS的一个主要缺点是它消耗的功率大于50mW[1],这对于需要使用设备电池有限能量的始终在线传感是不可行的。此外,由于信噪比降低,CIS中的功率降低会导致图像退化,这对于捕获高质量图像是不可接受的。许多低功率的CISs已经被报道[2-3]。然而,由于在低电源电压下设备运行需要额外的像素内电路,它们不足以用作高分辨率传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6.3 A 45.5μW 15fps always-on CMOS image sensor for mobile and wearable devices
Most mobile devices embed a CMOS image sensor (CIS) for capturing images. In addition, a variety of sensors such as proximity, ambient light, and fingerprint sensors are integrated for device control. The integration of multiple sensors in a device requires significant power consumption, area, and cost. In contrast to multiple sensors, an always-on CIS enables advanced smart sensing, including gesture sensing, face recognition, eye tracking, and so on. Smart sensing using a CIS offers a variety of user interfaces and experiences such as touch-less control, authentication, gaming, and object recognition for the Internet of Things (IOT). A major drawback of a CIS in mobile devices is that it consumes power greater than 50mW [1], and this is not feasible for always-on sensing that is required to function with the limited energy available from the device's battery. Moreover, power reduction in a CIS causes image degradation owing to reduced SNR, which is not acceptable for capturing high-quality images. Many low-power CISs have been reported [2-3]. However, they are inadequate for use as high-resolution sensors because of the requirement of additional in-pixel circuits for device operation at low supply voltages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
F2: Memory trends: From big data to wearable devices 13.6 A 600μW Bluetooth low-energy front-end receiver in 0.13μm CMOS technology 22.8 A 24-to-35Gb/s x4 VCSEL driver IC with multi-rate referenceless CDR in 0.13um SiGe BiCMOS 14.8 A 0.009mm2 2.06mW 32-to-2000MHz 2nd-order ΔΣ analogous bang-bang digital PLL with feed-forward delay-locked and phase-locked operations in 14nm FinFET technology 25.7 A 2.4GHz 4mW inductorless RF synthesizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1