多目标约束模糊嵌入式智能体在线协调的自适应遗传结构

E. Tawil, H. Hagras
{"title":"多目标约束模糊嵌入式智能体在线协调的自适应遗传结构","authors":"E. Tawil, H. Hagras","doi":"10.1109/ISEFS.2006.251145","DOIUrl":null,"url":null,"abstract":"This paper presents a novel embedded agent architecture that aims to co-ordinate a system of interacting embedded agents in real-world intelligent environments using a unique on-line multi-objective and multi-constraint genetic algorithm. The embedded agents can be complex ones such as mobile robots that would operate hierarchical fuzzy logic controllers or simple ones such as desk lamps that would bear threshold functions instead. The architecture would enable the agents to learn the users' desires and act based on them in real-time without having to repeatedly configure the system. The system can handle unreliable sensors and actuators as well as compensating for agents that break down and adapting on-line to sudden changes. The architecture allows for the organisation of agents to be dynamic since it accommodates for agents migrating in and out of the system. Multifarious experiments were performed on implementations of the aforementioned architecture where the system was tested in different scenarios of varying circumstances","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive Genetic-Based Architecture for the On-line Co-ordination of Fuzzy Embedded Agents with Multiple Objectives and Constraints\",\"authors\":\"E. Tawil, H. Hagras\",\"doi\":\"10.1109/ISEFS.2006.251145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel embedded agent architecture that aims to co-ordinate a system of interacting embedded agents in real-world intelligent environments using a unique on-line multi-objective and multi-constraint genetic algorithm. The embedded agents can be complex ones such as mobile robots that would operate hierarchical fuzzy logic controllers or simple ones such as desk lamps that would bear threshold functions instead. The architecture would enable the agents to learn the users' desires and act based on them in real-time without having to repeatedly configure the system. The system can handle unreliable sensors and actuators as well as compensating for agents that break down and adapting on-line to sudden changes. The architecture allows for the organisation of agents to be dynamic since it accommodates for agents migrating in and out of the system. Multifarious experiments were performed on implementations of the aforementioned architecture where the system was tested in different scenarios of varying circumstances\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的嵌入式智能体架构,该架构旨在使用独特的在线多目标多约束遗传算法来协调现实世界智能环境中相互作用的嵌入式智能体系统。嵌入式代理可以是复杂的,比如操作分层模糊逻辑控制器的移动机器人,也可以是简单的,比如承担阈值功能的台灯。该体系结构将使代理能够了解用户的需求,并根据这些需求实时采取行动,而无需重复配置系统。该系统可以处理不可靠的传感器和执行器,也可以补偿故障的代理,并在线适应突发变化。该体系结构允许代理的组织是动态的,因为它允许代理迁入和迁出系统。对上述体系结构的实现进行了各种各样的实验,其中系统在不同环境的不同场景中进行了测试
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Adaptive Genetic-Based Architecture for the On-line Co-ordination of Fuzzy Embedded Agents with Multiple Objectives and Constraints
This paper presents a novel embedded agent architecture that aims to co-ordinate a system of interacting embedded agents in real-world intelligent environments using a unique on-line multi-objective and multi-constraint genetic algorithm. The embedded agents can be complex ones such as mobile robots that would operate hierarchical fuzzy logic controllers or simple ones such as desk lamps that would bear threshold functions instead. The architecture would enable the agents to learn the users' desires and act based on them in real-time without having to repeatedly configure the system. The system can handle unreliable sensors and actuators as well as compensating for agents that break down and adapting on-line to sudden changes. The architecture allows for the organisation of agents to be dynamic since it accommodates for agents migrating in and out of the system. Multifarious experiments were performed on implementations of the aforementioned architecture where the system was tested in different scenarios of varying circumstances
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1