{"title":"薄圆柱形硅纳米线mosfet量子力学效应的基于物理的紧凑模型","authors":"B. Cousin, O. Rozeau, M. Jaud, J. Jomaah","doi":"10.1109/VTSA.2009.5159313","DOIUrl":null,"url":null,"abstract":"Since we know that quantum-mechanical effects are predominant in surrounding-gate MOSFETs, a model should be developed. For the first time, this paper presents an analytic model of quantization for thin cylindrical Si-Nanowire MOSFETs by using a variational approach. The model is implemented into a surface potential like model. It is shown that results agree with the numerical simulations.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A physics-based compact model of quantum-mechanical effects for thin cylindrical Si-Nanowire MOSFETs\",\"authors\":\"B. Cousin, O. Rozeau, M. Jaud, J. Jomaah\",\"doi\":\"10.1109/VTSA.2009.5159313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since we know that quantum-mechanical effects are predominant in surrounding-gate MOSFETs, a model should be developed. For the first time, this paper presents an analytic model of quantization for thin cylindrical Si-Nanowire MOSFETs by using a variational approach. The model is implemented into a surface potential like model. It is shown that results agree with the numerical simulations.\",\"PeriodicalId\":309622,\"journal\":{\"name\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Technology, Systems, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTSA.2009.5159313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A physics-based compact model of quantum-mechanical effects for thin cylindrical Si-Nanowire MOSFETs
Since we know that quantum-mechanical effects are predominant in surrounding-gate MOSFETs, a model should be developed. For the first time, this paper presents an analytic model of quantization for thin cylindrical Si-Nanowire MOSFETs by using a variational approach. The model is implemented into a surface potential like model. It is shown that results agree with the numerical simulations.