{"title":"纳米机电开关器件:向终极能源效率和寿命扩展","authors":"P. Feng","doi":"10.1109/E3S.2013.6705881","DOIUrl":null,"url":null,"abstract":"The active search for candidates of an ideal switching device for low-voltage logic and ultralow-power applications has stimulated focused explorations of contact-mode switches (relays) based on micro/nanoelectromechanical systems (MEMS/NEMS) [1-7]. This has been driven by the fundamental advantages that mechanical devices offer, such as ideally abrupt switching with zero off-state leakage, suitable for harsh and extreme environments, and very small footprints (e.g., particularly with NEMS). In pursuing and realizing these advantages, however, significant challenges still remain today: (i) All the high-performance mechanical switches recently demonstrated are still in the MEMS domain [2-5] and are orders of magnitude larger in size or volume (>103 to 104) than the nanoscale devices presented in this work. (ii) Most truly nanoscale contact-mode NEMS switches known to date (often based on various nanowires, cantilevers and nanotubes) still suffer from very short lifetimes.nanoscale contact-mode NEMS switches","PeriodicalId":231837,"journal":{"name":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoelectromechanical switching devices: Scaling toward ultimate energy efficiency and longevity\",\"authors\":\"P. Feng\",\"doi\":\"10.1109/E3S.2013.6705881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active search for candidates of an ideal switching device for low-voltage logic and ultralow-power applications has stimulated focused explorations of contact-mode switches (relays) based on micro/nanoelectromechanical systems (MEMS/NEMS) [1-7]. This has been driven by the fundamental advantages that mechanical devices offer, such as ideally abrupt switching with zero off-state leakage, suitable for harsh and extreme environments, and very small footprints (e.g., particularly with NEMS). In pursuing and realizing these advantages, however, significant challenges still remain today: (i) All the high-performance mechanical switches recently demonstrated are still in the MEMS domain [2-5] and are orders of magnitude larger in size or volume (>103 to 104) than the nanoscale devices presented in this work. (ii) Most truly nanoscale contact-mode NEMS switches known to date (often based on various nanowires, cantilevers and nanotubes) still suffer from very short lifetimes.nanoscale contact-mode NEMS switches\",\"PeriodicalId\":231837,\"journal\":{\"name\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/E3S.2013.6705881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/E3S.2013.6705881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoelectromechanical switching devices: Scaling toward ultimate energy efficiency and longevity
The active search for candidates of an ideal switching device for low-voltage logic and ultralow-power applications has stimulated focused explorations of contact-mode switches (relays) based on micro/nanoelectromechanical systems (MEMS/NEMS) [1-7]. This has been driven by the fundamental advantages that mechanical devices offer, such as ideally abrupt switching with zero off-state leakage, suitable for harsh and extreme environments, and very small footprints (e.g., particularly with NEMS). In pursuing and realizing these advantages, however, significant challenges still remain today: (i) All the high-performance mechanical switches recently demonstrated are still in the MEMS domain [2-5] and are orders of magnitude larger in size or volume (>103 to 104) than the nanoscale devices presented in this work. (ii) Most truly nanoscale contact-mode NEMS switches known to date (often based on various nanowires, cantilevers and nanotubes) still suffer from very short lifetimes.nanoscale contact-mode NEMS switches