{"title":"一种用于失相发射机的低q谐振槽式相位调制器","authors":"G. Yahalom, J. Dawson","doi":"10.1109/RFIC.2013.6569566","DOIUrl":null,"url":null,"abstract":"A new design concept is proposed for a phase modulator for outphasing transmitter architectures, utilizing the phase shifting capabilities of a resonant tank and the ability to separately control the circuit properties via its components. A prototype in 65-nm CMOS achieves 12 bits of resolution, with a fast settling time of less than five carrier cycles to within 1°. The circuit is also tested as a stand-alone transmitter showing an EVM of less than 5% for 8-PSK modulation at maximum data rate, meeting the FCC requirements for operation at the medical implant communication services (MICS) band.","PeriodicalId":203521,"journal":{"name":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-Q resonant tank phase modulator for outphasing transmitters\",\"authors\":\"G. Yahalom, J. Dawson\",\"doi\":\"10.1109/RFIC.2013.6569566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new design concept is proposed for a phase modulator for outphasing transmitter architectures, utilizing the phase shifting capabilities of a resonant tank and the ability to separately control the circuit properties via its components. A prototype in 65-nm CMOS achieves 12 bits of resolution, with a fast settling time of less than five carrier cycles to within 1°. The circuit is also tested as a stand-alone transmitter showing an EVM of less than 5% for 8-PSK modulation at maximum data rate, meeting the FCC requirements for operation at the medical implant communication services (MICS) band.\",\"PeriodicalId\":203521,\"journal\":{\"name\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2013.6569566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2013.6569566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-Q resonant tank phase modulator for outphasing transmitters
A new design concept is proposed for a phase modulator for outphasing transmitter architectures, utilizing the phase shifting capabilities of a resonant tank and the ability to separately control the circuit properties via its components. A prototype in 65-nm CMOS achieves 12 bits of resolution, with a fast settling time of less than five carrier cycles to within 1°. The circuit is also tested as a stand-alone transmitter showing an EVM of less than 5% for 8-PSK modulation at maximum data rate, meeting the FCC requirements for operation at the medical implant communication services (MICS) band.