用遗传算法推导数值时间序列趋势的语言摘要

J. Kacprzyk, A. Wilbik, S. Zadrozny
{"title":"用遗传算法推导数值时间序列趋势的语言摘要","authors":"J. Kacprzyk, A. Wilbik, S. Zadrozny","doi":"10.1109/ISEFS.2006.251150","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to propose a new easily implementable approach to a linguistic summarization of trends that may occur in temporal data, to be more specific - time series. To characterize the trends in time series, we use three parameters: dynamics of change, duration and variability, and apply to them the fuzzy linguistic summaries of data (databases) in the sense of Yager (cf. Yager (1982), Kacprzyk and Yager (2001) and Kacprzyk et al. (2000)) which in the form of natural language-like sentences subsume the very essence of a set of data. A genetic algorithm is used to generate the linguistic summaries sought","PeriodicalId":269492,"journal":{"name":"2006 International Symposium on Evolving Fuzzy Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using a Genetic Algorithm to Derive a Linguistic Summary of Trends in Numerical Time Series\",\"authors\":\"J. Kacprzyk, A. Wilbik, S. Zadrozny\",\"doi\":\"10.1109/ISEFS.2006.251150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to propose a new easily implementable approach to a linguistic summarization of trends that may occur in temporal data, to be more specific - time series. To characterize the trends in time series, we use three parameters: dynamics of change, duration and variability, and apply to them the fuzzy linguistic summaries of data (databases) in the sense of Yager (cf. Yager (1982), Kacprzyk and Yager (2001) and Kacprzyk et al. (2000)) which in the form of natural language-like sentences subsume the very essence of a set of data. A genetic algorithm is used to generate the linguistic summaries sought\",\"PeriodicalId\":269492,\"journal\":{\"name\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Symposium on Evolving Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISEFS.2006.251150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Symposium on Evolving Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEFS.2006.251150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文的目的是提出一种新的易于实现的方法来对可能出现在时间数据中的趋势进行语言总结,更具体地说,是时间序列。为了描述时间序列的趋势,我们使用了三个参数:变化的动态、持续时间和可变性,并将Yager(参见Yager(1982)、Kacprzyk和Yager(2001)以及Kacprzyk等人(2000))意义上的数据(数据库)的模糊语言摘要应用于它们,这些摘要以自然语言的形式包含了一组数据的本质。采用遗传算法生成语言摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using a Genetic Algorithm to Derive a Linguistic Summary of Trends in Numerical Time Series
The purpose of this paper is to propose a new easily implementable approach to a linguistic summarization of trends that may occur in temporal data, to be more specific - time series. To characterize the trends in time series, we use three parameters: dynamics of change, duration and variability, and apply to them the fuzzy linguistic summaries of data (databases) in the sense of Yager (cf. Yager (1982), Kacprzyk and Yager (2001) and Kacprzyk et al. (2000)) which in the form of natural language-like sentences subsume the very essence of a set of data. A genetic algorithm is used to generate the linguistic summaries sought
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Search Ability between Genetic Fuzzy Rule Selection and Fuzzy Genetics-Based Machine Learning Recognition of Different Operating States in Complex Systems by Use of Growing Neural Models Spatial Interpolation of Traffic Data by Genetic Fuzzy System Pruning for interpretability of large spanned eTS Learning Methods for Intelligent Evolving Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1