fbsoi逆变器链中温度相关的滞回传播延迟

D. Chang, Byonug Min, S. Veeraraghavan, M. Mendicino, T. Cooper, S. Egley, K. Cox
{"title":"fbsoi逆变器链中温度相关的滞回传播延迟","authors":"D. Chang, Byonug Min, S. Veeraraghavan, M. Mendicino, T. Cooper, S. Egley, K. Cox","doi":"10.1109/SOI.1999.819863","DOIUrl":null,"url":null,"abstract":"The CMOS gate delay on SOI depends on the switching history of floating-body transistors, which introduces uncertainty in predicting the performance of SOI-based circuits (Suh and Fossum, 1994; Shahidi et al., 1999). The main cause of the hysteretic delay is due to the transient variation of the body voltage during switching and the corresponding threshold voltage change. Since the capacitance coupling and generation/recombination currents determining the transient body-voltage are strong functions of temperature, the gate delay is also expected to show a significant temperature dependence. In the measurement of a 610-stage floating-body SOI CMOS open-ended inverter chain, we have observed that the hysteretic gate delay variation is worse at higher temperature for devices which showed pulse compression at room temperature. In this work, we have performed simulations to predict fast/slow gate delays for different SOI device structures versus temperature, and compared these results to measurements, thus illustrating the importance of accounting for temperature in history effects.","PeriodicalId":117832,"journal":{"name":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Temperature dependent hysteretic propagation delay in FB SOI inverter chain\",\"authors\":\"D. Chang, Byonug Min, S. Veeraraghavan, M. Mendicino, T. Cooper, S. Egley, K. Cox\",\"doi\":\"10.1109/SOI.1999.819863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CMOS gate delay on SOI depends on the switching history of floating-body transistors, which introduces uncertainty in predicting the performance of SOI-based circuits (Suh and Fossum, 1994; Shahidi et al., 1999). The main cause of the hysteretic delay is due to the transient variation of the body voltage during switching and the corresponding threshold voltage change. Since the capacitance coupling and generation/recombination currents determining the transient body-voltage are strong functions of temperature, the gate delay is also expected to show a significant temperature dependence. In the measurement of a 610-stage floating-body SOI CMOS open-ended inverter chain, we have observed that the hysteretic gate delay variation is worse at higher temperature for devices which showed pulse compression at room temperature. In this work, we have performed simulations to predict fast/slow gate delays for different SOI device structures versus temperature, and compared these results to measurements, thus illustrating the importance of accounting for temperature in history effects.\",\"PeriodicalId\":117832,\"journal\":{\"name\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOI.1999.819863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1999.819863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

SOI上的CMOS栅极延迟取决于浮体晶体管的开关历史,这在预测基于SOI的电路的性能时引入了不确定性(Suh和Fossum, 1994;Shahidi et al., 1999)。产生滞后延迟的主要原因是开关过程中体电压的瞬态变化和相应的阈值电压的变化。由于电容耦合和产生/复合电流决定瞬态体电压是温度的强函数,因此门延迟也预计会显示出显著的温度依赖性。在对610级浮体SOI CMOS开放式逆变器链的测量中,我们观察到在室温下表现出脉冲压缩的器件在更高温度下的滞回门延迟变化更差。在这项工作中,我们进行了模拟,以预测不同SOI器件结构对温度的快/慢栅极延迟,并将这些结果与测量结果进行了比较,从而说明了在历史效应中考虑温度的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature dependent hysteretic propagation delay in FB SOI inverter chain
The CMOS gate delay on SOI depends on the switching history of floating-body transistors, which introduces uncertainty in predicting the performance of SOI-based circuits (Suh and Fossum, 1994; Shahidi et al., 1999). The main cause of the hysteretic delay is due to the transient variation of the body voltage during switching and the corresponding threshold voltage change. Since the capacitance coupling and generation/recombination currents determining the transient body-voltage are strong functions of temperature, the gate delay is also expected to show a significant temperature dependence. In the measurement of a 610-stage floating-body SOI CMOS open-ended inverter chain, we have observed that the hysteretic gate delay variation is worse at higher temperature for devices which showed pulse compression at room temperature. In this work, we have performed simulations to predict fast/slow gate delays for different SOI device structures versus temperature, and compared these results to measurements, thus illustrating the importance of accounting for temperature in history effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel 0.7 V two-port 6T SRAM memory cell structure with single-bit-line simultaneous read-and-write access (SBLSRWA) capability using partially-depleted SOI CMOS dynamic-threshold technique Power amplifiers on thin-film-silicon-on-insulator (TFSOI) technology Single chip wireless systems using SOI Buried oxide fringing capacitance: a new physical model and its implication on SOI device scaling and architecture A bandgap circuit operating up to 300/spl deg/C using lateral bipolar transistors in thin-film CMOS-SOI technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1