{"title":"纳米探针中电阻性开放缺陷隔离","authors":"Yunfei Wang, H. Ryu, T. Tong","doi":"10.31399/asm.cp.istfa2021p0241","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present case studies of localizing resistive open defects using various FA techniques, including two-terminal IV, two-terminal Electron-Beam Absorbed Current (EBAC), Electron Beam Induced Resistance Change (EBIRCh), Pulsed IV, Capacitance-Voltage (CV) and Scanning Capacitance Microscopy (SCM). The advantage and limitation of each technique will also be discussed.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistive Open Defect Isolation in Nano-Probing\",\"authors\":\"Yunfei Wang, H. Ryu, T. Tong\",\"doi\":\"10.31399/asm.cp.istfa2021p0241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present case studies of localizing resistive open defects using various FA techniques, including two-terminal IV, two-terminal Electron-Beam Absorbed Current (EBAC), Electron Beam Induced Resistance Change (EBIRCh), Pulsed IV, Capacitance-Voltage (CV) and Scanning Capacitance Microscopy (SCM). The advantage and limitation of each technique will also be discussed.\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present case studies of localizing resistive open defects using various FA techniques, including two-terminal IV, two-terminal Electron-Beam Absorbed Current (EBAC), Electron Beam Induced Resistance Change (EBIRCh), Pulsed IV, Capacitance-Voltage (CV) and Scanning Capacitance Microscopy (SCM). The advantage and limitation of each technique will also be discussed.