Linh Nghiem, Francis K.C. Hui, Samuel Mueller, A.H.Welsh
{"title":"基于Cholesky矩阵惩罚的稀疏切片逆回归","authors":"Linh Nghiem, Francis K.C. Hui, Samuel Mueller, A.H.Welsh","doi":"10.5705/ss.202020.0406","DOIUrl":null,"url":null,"abstract":"We introduce a new sparse sliced inverse regression estimator called Cholesky matrix penalization and its adaptive version for achieving sparsity in estimating the dimensions of the central subspace. The new estimators use the Cholesky decomposition of the covariance matrix of the covariates and include a regularization term in the objective function to achieve sparsity in a computationally efficient manner. We establish the theoretical values of the tuning parameters that achieve estimation and variable selection consistency for the central subspace. Furthermore, we propose a new projection information criterion to select the tuning parameter for our proposed estimators and prove that the new criterion facilitates selection consistency. The Cholesky matrix penalization estimator inherits the strength of the Matrix Lasso and the Lasso sliced inverse regression estimator; it has superior performance in numerical studies and can be adapted to other sufficient dimension methods in the literature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sparse Sliced Inverse Regression via Cholesky Matrix Penalization\",\"authors\":\"Linh Nghiem, Francis K.C. Hui, Samuel Mueller, A.H.Welsh\",\"doi\":\"10.5705/ss.202020.0406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a new sparse sliced inverse regression estimator called Cholesky matrix penalization and its adaptive version for achieving sparsity in estimating the dimensions of the central subspace. The new estimators use the Cholesky decomposition of the covariance matrix of the covariates and include a regularization term in the objective function to achieve sparsity in a computationally efficient manner. We establish the theoretical values of the tuning parameters that achieve estimation and variable selection consistency for the central subspace. Furthermore, we propose a new projection information criterion to select the tuning parameter for our proposed estimators and prove that the new criterion facilitates selection consistency. The Cholesky matrix penalization estimator inherits the strength of the Matrix Lasso and the Lasso sliced inverse regression estimator; it has superior performance in numerical studies and can be adapted to other sufficient dimension methods in the literature.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202020.0406\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202020.0406","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sparse Sliced Inverse Regression via Cholesky Matrix Penalization
We introduce a new sparse sliced inverse regression estimator called Cholesky matrix penalization and its adaptive version for achieving sparsity in estimating the dimensions of the central subspace. The new estimators use the Cholesky decomposition of the covariance matrix of the covariates and include a regularization term in the objective function to achieve sparsity in a computationally efficient manner. We establish the theoretical values of the tuning parameters that achieve estimation and variable selection consistency for the central subspace. Furthermore, we propose a new projection information criterion to select the tuning parameter for our proposed estimators and prove that the new criterion facilitates selection consistency. The Cholesky matrix penalization estimator inherits the strength of the Matrix Lasso and the Lasso sliced inverse regression estimator; it has superior performance in numerical studies and can be adapted to other sufficient dimension methods in the literature.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.