{"title":"利用硅技术进行太赫兹光场成像","authors":"U. R. Pfeiffer;A. Kutaish","doi":"10.1109/OJSSCS.2023.3328975","DOIUrl":null,"url":null,"abstract":"The terahertz (THz) frequency range is widely considered the most challenging and underdeveloped frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10 000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high-resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"4 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10302341","citationCount":"0","resultStr":"{\"title\":\"Terahertz Light-Field Imaging With Silicon Technologies\",\"authors\":\"U. R. Pfeiffer;A. Kutaish\",\"doi\":\"10.1109/OJSSCS.2023.3328975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The terahertz (THz) frequency range is widely considered the most challenging and underdeveloped frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10 000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high-resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"4 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10302341\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10302341/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10302341/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
人们普遍认为太赫兹(THz)频率范围是最具挑战性和开发不足的频率范围,原因是缺乏有效弥合微波(低于 100 GHz)和光学(高于 10 000 GHz)之间过渡区域的技术。尽管 THz 辐射是材料识别的完美选择,也可作为 X 射线的安全替代品,用于生成不透明物体内部的高分辨率图像,但首先需要一种全新的方法来建立新型设备和技术。
Terahertz Light-Field Imaging With Silicon Technologies
The terahertz (THz) frequency range is widely considered the most challenging and underdeveloped frequency range due to the lack of technologies to effectively bridge the transition region between microwaves (below 100 GHz) and optics (above 10 000 GHz). Although THz radiation would be perfect for material identification and as a safe alternative to X-rays for producing high-resolution images of the interior of opaque objects, first a fundamentally new approach is needed to establish novel devices and techniques.