环形光束轮廓对激光粉末床熔合金属溅射特性的影响

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Laser Applications Pub Date : 2023-09-13 DOI:10.2351/7.0001153
Jonas Grünewald, Jan Reimann, Katrin Wudy
{"title":"环形光束轮廓对激光粉末床熔合金属溅射特性的影响","authors":"Jonas Grünewald, Jan Reimann, Katrin Wudy","doi":"10.2351/7.0001153","DOIUrl":null,"url":null,"abstract":"Despite the maturity of laser-based powder bed fusion of metals (PBF-LB/M), some barriers prevent the manufacturing process from fully being established in the industry. One drawback is spatter formation, which is disadvantageous to PBF-LB/M for three main reasons. First, adhering spatter can initiate coater collision, resulting in process failure. Second, large adhering spatter may cause lack-of-fusion defects as they require more energy to remelt sufficiently compared to unprocessed powder. Furthermore, big nonadhering spatter cannot be recycled as powder. The recycling of small spatter particles potentially results in degraded material properties. Ring-shaped beam profiles have been established for deep penetration welding to reduce spatter formation. Investigations on ring-shaped beam profiles in PBF-LB/M focus on improving productivity and process robustness. Qualitative spatter reduction in PBF-LB/M using ring-shaped beam profiles has also been reported. This publication quantitatively examines the influence of ring-shaped beam profiles on spatter formation in PBF-LB/M. Image processing algorithms of on-axis high-speed images are utilized for spatter detection and tracking. A self-developed spatter segmentation is used to determine the spatter size. A Laplacian of Gaussian filter is combined with a Kalman tracker to count and track the spatter. The results show that spatter formation is highly influenced by the beam profile and the chosen process parameters. Considering the melt track width, ring-shaped beam profiles could reduce the number of spatter per fused area. High numbers of spatter are generated when parameter sets result in balling. Moreover, spatter velocity is primarily dependent on the introduced dimensionless enthalpy.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"20 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of ring-shaped beam profiles on spatter characteristics in laser-based powder bed fusion of metals\",\"authors\":\"Jonas Grünewald, Jan Reimann, Katrin Wudy\",\"doi\":\"10.2351/7.0001153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the maturity of laser-based powder bed fusion of metals (PBF-LB/M), some barriers prevent the manufacturing process from fully being established in the industry. One drawback is spatter formation, which is disadvantageous to PBF-LB/M for three main reasons. First, adhering spatter can initiate coater collision, resulting in process failure. Second, large adhering spatter may cause lack-of-fusion defects as they require more energy to remelt sufficiently compared to unprocessed powder. Furthermore, big nonadhering spatter cannot be recycled as powder. The recycling of small spatter particles potentially results in degraded material properties. Ring-shaped beam profiles have been established for deep penetration welding to reduce spatter formation. Investigations on ring-shaped beam profiles in PBF-LB/M focus on improving productivity and process robustness. Qualitative spatter reduction in PBF-LB/M using ring-shaped beam profiles has also been reported. This publication quantitatively examines the influence of ring-shaped beam profiles on spatter formation in PBF-LB/M. Image processing algorithms of on-axis high-speed images are utilized for spatter detection and tracking. A self-developed spatter segmentation is used to determine the spatter size. A Laplacian of Gaussian filter is combined with a Kalman tracker to count and track the spatter. The results show that spatter formation is highly influenced by the beam profile and the chosen process parameters. Considering the melt track width, ring-shaped beam profiles could reduce the number of spatter per fused area. High numbers of spatter are generated when parameter sets result in balling. Moreover, spatter velocity is primarily dependent on the introduced dimensionless enthalpy.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001153\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001153","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管基于激光的粉末床金属熔合(PBF-LB/M)技术已经成熟,但仍存在一些障碍,阻碍了该制造工艺在行业中完全建立起来。一个缺点是飞溅形成,这对PBF-LB/M不利,主要有三个原因。首先,粘附飞溅会引发涂布机碰撞,导致工艺失效。其次,与未加工的粉末相比,大的粘附飞溅可能导致缺乏熔合的缺陷,因为它们需要更多的能量才能充分熔化。此外,大的不粘附飞溅物不能作为粉末回收。小飞溅颗粒的回收可能会导致材料性能下降。为了减少飞溅的形成,建立了用于深熔焊接的环形光束轮廓。PBF-LB/M环形梁型的研究重点是提高生产率和工艺鲁棒性。使用环形光束剖面定性地减少PBF-LB/M的飞溅也有报道。本出版物定量研究了环形光束剖面对PBF-LB/M中飞溅形成的影响。利用轴上高速图像的图像处理算法进行飞溅检测和跟踪。采用自主开发的飞溅分割方法确定飞溅大小。将拉普拉斯高斯滤波与卡尔曼跟踪相结合,对飞溅进行计数和跟踪。结果表明,溅射的形成受光束轮廓和工艺参数的影响较大。考虑到熔体轨迹宽度,环形束形可以减少每个熔体区域的飞溅次数。当参数设置导致成球时,会产生大量飞溅。此外,溅射速度主要取决于引入的无量纲焓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of ring-shaped beam profiles on spatter characteristics in laser-based powder bed fusion of metals
Despite the maturity of laser-based powder bed fusion of metals (PBF-LB/M), some barriers prevent the manufacturing process from fully being established in the industry. One drawback is spatter formation, which is disadvantageous to PBF-LB/M for three main reasons. First, adhering spatter can initiate coater collision, resulting in process failure. Second, large adhering spatter may cause lack-of-fusion defects as they require more energy to remelt sufficiently compared to unprocessed powder. Furthermore, big nonadhering spatter cannot be recycled as powder. The recycling of small spatter particles potentially results in degraded material properties. Ring-shaped beam profiles have been established for deep penetration welding to reduce spatter formation. Investigations on ring-shaped beam profiles in PBF-LB/M focus on improving productivity and process robustness. Qualitative spatter reduction in PBF-LB/M using ring-shaped beam profiles has also been reported. This publication quantitatively examines the influence of ring-shaped beam profiles on spatter formation in PBF-LB/M. Image processing algorithms of on-axis high-speed images are utilized for spatter detection and tracking. A self-developed spatter segmentation is used to determine the spatter size. A Laplacian of Gaussian filter is combined with a Kalman tracker to count and track the spatter. The results show that spatter formation is highly influenced by the beam profile and the chosen process parameters. Considering the melt track width, ring-shaped beam profiles could reduce the number of spatter per fused area. High numbers of spatter are generated when parameter sets result in balling. Moreover, spatter velocity is primarily dependent on the introduced dimensionless enthalpy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
期刊最新文献
Experimental evaluation of a WC–Co alloy layer formation process by multibeam-type laser metal deposition with blue diode lasers Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching Investigating the influence of thermal behavior on microstructure during solidification in laser powder bed fusion of AlSi10Mg alloys: A phase-field analysis High-power fiber-coupled diode laser welding of 10-mm thick Inconel 617 superalloy Influence of temperature and beam size on weld track shape in laser powder bed fusion of pure copper using near-infrared laser system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1