{"title":"高维工具变量回归中的假设检验及其在基因组学数据中的应用","authors":"Jiarui Lu, Hongzhe Li","doi":"10.5705/ss.202019.0408","DOIUrl":null,"url":null,"abstract":"Gene expression and phenotype association can be affected by potential unmeasured confounders from multiple sources, leading to biased estimates of the associations. Since genetic variants largely explain gene expression variations, they can be used as instruments in studying the association between gene expressions and phenotype in the framework of high dimensional instrumental variable (IV) regression. However, because the dimensions of both genetic variants and gene expressions are often larger than the sample size, statistical inferences such as hypothesis testing for such high dimensional IV models are not trivial and have not been investigated in literature. The problem is more challenging since the instrumental variables (e.g., genetic variants) have to be selected among a large set of genetic variants. This paper considers the problem of hypothesis testing for sparse IV regression models and presents methods for testing single regression coefficient and multiple testing of multiple coefficients, where the test statistic for each single coefficient is constructed based on an inverse regression. A multiple testing procedure is developed for selecting variables and is shown to control the false discovery rate. Simulations are conducted to evaluate the performance of our proposed methods. These methods are illustrated by an analysis of a yeast dataset in order to identify genes that are associated with growth in the presence of hydrogen peroxide.","PeriodicalId":49478,"journal":{"name":"Statistica Sinica","volume":"53 60 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothesis Testing in High-Dimensional Instrumental Variables Regression With an Application to Genomics Data\",\"authors\":\"Jiarui Lu, Hongzhe Li\",\"doi\":\"10.5705/ss.202019.0408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene expression and phenotype association can be affected by potential unmeasured confounders from multiple sources, leading to biased estimates of the associations. Since genetic variants largely explain gene expression variations, they can be used as instruments in studying the association between gene expressions and phenotype in the framework of high dimensional instrumental variable (IV) regression. However, because the dimensions of both genetic variants and gene expressions are often larger than the sample size, statistical inferences such as hypothesis testing for such high dimensional IV models are not trivial and have not been investigated in literature. The problem is more challenging since the instrumental variables (e.g., genetic variants) have to be selected among a large set of genetic variants. This paper considers the problem of hypothesis testing for sparse IV regression models and presents methods for testing single regression coefficient and multiple testing of multiple coefficients, where the test statistic for each single coefficient is constructed based on an inverse regression. A multiple testing procedure is developed for selecting variables and is shown to control the false discovery rate. Simulations are conducted to evaluate the performance of our proposed methods. These methods are illustrated by an analysis of a yeast dataset in order to identify genes that are associated with growth in the presence of hydrogen peroxide.\",\"PeriodicalId\":49478,\"journal\":{\"name\":\"Statistica Sinica\",\"volume\":\"53 60 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Sinica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202019.0408\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Sinica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5705/ss.202019.0408","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Hypothesis Testing in High-Dimensional Instrumental Variables Regression With an Application to Genomics Data
Gene expression and phenotype association can be affected by potential unmeasured confounders from multiple sources, leading to biased estimates of the associations. Since genetic variants largely explain gene expression variations, they can be used as instruments in studying the association between gene expressions and phenotype in the framework of high dimensional instrumental variable (IV) regression. However, because the dimensions of both genetic variants and gene expressions are often larger than the sample size, statistical inferences such as hypothesis testing for such high dimensional IV models are not trivial and have not been investigated in literature. The problem is more challenging since the instrumental variables (e.g., genetic variants) have to be selected among a large set of genetic variants. This paper considers the problem of hypothesis testing for sparse IV regression models and presents methods for testing single regression coefficient and multiple testing of multiple coefficients, where the test statistic for each single coefficient is constructed based on an inverse regression. A multiple testing procedure is developed for selecting variables and is shown to control the false discovery rate. Simulations are conducted to evaluate the performance of our proposed methods. These methods are illustrated by an analysis of a yeast dataset in order to identify genes that are associated with growth in the presence of hydrogen peroxide.
期刊介绍:
Statistica Sinica aims to meet the needs of statisticians in a rapidly changing world. It provides a forum for the publication of innovative work of high quality in all areas of statistics, including theory, methodology and applications. The journal encourages the development and principled use of statistical methodology that is relevant for society, science and technology.