Thomas Kaster, Jan-Hendrik Rissom, Leon Gorissen, Philipp Walderich, Jan-Niklas Schneider, Christian Hinke
{"title":"移动机器人在激光材料加工中的应用探讨","authors":"Thomas Kaster, Jan-Hendrik Rissom, Leon Gorissen, Philipp Walderich, Jan-Niklas Schneider, Christian Hinke","doi":"10.2351/7.0001127","DOIUrl":null,"url":null,"abstract":"Laser-based production systems have become more and more popular in recent years due to their potential to achieve high precision and accuracy in a wide range of different applications. However, the kinematic systems used for laser materials processing (LMP) are often inherited from other production technologies such as milling. The use of mobile robots (MRs) equipped with laser processing optics could disprove the current paradigm of adapted kinematic systems: scaling the size of the material processing system with the size of the components being processed and, thus, the resources used. The trend of autonomous MRs replacing classical kinematic systems in the field of material handling in industrial applications has been evident for years due to their higher flexibility, efficiency, and lower operating costs. In this paper, the prototype of a corresponding MR system is presented. In addition, the general design of the MR is presented. One challenge is the accuracy of an MR; for a common LMP such as laser cutting, the MR must be able to follow a predefined trajectory as accurately as possible. For this purpose, two different measurement systems are presented and compared. To demonstrate the potential of the mobile robot, an exemplary LMP process is also performed and evaluated. Finally, possibilities for improvement or further development, such as integration of scanner optics or the use of several autonomous MRs to increase productivity, are shown.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":"172 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approach toward the application of mobile robots in laser materials processing\",\"authors\":\"Thomas Kaster, Jan-Hendrik Rissom, Leon Gorissen, Philipp Walderich, Jan-Niklas Schneider, Christian Hinke\",\"doi\":\"10.2351/7.0001127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-based production systems have become more and more popular in recent years due to their potential to achieve high precision and accuracy in a wide range of different applications. However, the kinematic systems used for laser materials processing (LMP) are often inherited from other production technologies such as milling. The use of mobile robots (MRs) equipped with laser processing optics could disprove the current paradigm of adapted kinematic systems: scaling the size of the material processing system with the size of the components being processed and, thus, the resources used. The trend of autonomous MRs replacing classical kinematic systems in the field of material handling in industrial applications has been evident for years due to their higher flexibility, efficiency, and lower operating costs. In this paper, the prototype of a corresponding MR system is presented. In addition, the general design of the MR is presented. One challenge is the accuracy of an MR; for a common LMP such as laser cutting, the MR must be able to follow a predefined trajectory as accurately as possible. For this purpose, two different measurement systems are presented and compared. To demonstrate the potential of the mobile robot, an exemplary LMP process is also performed and evaluated. Finally, possibilities for improvement or further development, such as integration of scanner optics or the use of several autonomous MRs to increase productivity, are shown.\",\"PeriodicalId\":50168,\"journal\":{\"name\":\"Journal of Laser Applications\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Laser Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2351/7.0001127\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Approach toward the application of mobile robots in laser materials processing
Laser-based production systems have become more and more popular in recent years due to their potential to achieve high precision and accuracy in a wide range of different applications. However, the kinematic systems used for laser materials processing (LMP) are often inherited from other production technologies such as milling. The use of mobile robots (MRs) equipped with laser processing optics could disprove the current paradigm of adapted kinematic systems: scaling the size of the material processing system with the size of the components being processed and, thus, the resources used. The trend of autonomous MRs replacing classical kinematic systems in the field of material handling in industrial applications has been evident for years due to their higher flexibility, efficiency, and lower operating costs. In this paper, the prototype of a corresponding MR system is presented. In addition, the general design of the MR is presented. One challenge is the accuracy of an MR; for a common LMP such as laser cutting, the MR must be able to follow a predefined trajectory as accurately as possible. For this purpose, two different measurement systems are presented and compared. To demonstrate the potential of the mobile robot, an exemplary LMP process is also performed and evaluated. Finally, possibilities for improvement or further development, such as integration of scanner optics or the use of several autonomous MRs to increase productivity, are shown.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.