{"title":"桃红草提取物与姜黄素纳米脂质体共胶囊化研究口腔癌OCC-02细胞的细胞毒性增强、凋亡诱导和EGFR基因表达抑制","authors":"Mahshid Azizi, Ghasem Ghalamfarsa, Fatemeh Khosravani, Hassan Bardania, Shahriar Azizi","doi":"10.1049/2023/1745877","DOIUrl":null,"url":null,"abstract":"Curcumin is one of the natural anticancer drugs but its efficiency is limited by low stability, insufficient bioavailability, poor solubility, and poor permeability. Dorema aucheri (Bilhar) is a herb with precious pharmaceutical properties. This study aimed to develop a nanoliposome-based curcumin and Bilhar extract codelivery system. The nanocompounds were synthesized using the lipid thin-film hydration method and characterized by transmission electron microscopy, and dynamic light scattering techniques, and their cytotoxicity and apoptotic effect on the primary oral cancer cell line were evaluated via 2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry. Moreover, the expression of the epidermal growth factor receptor (EGFR) gene in the treated cells was assessed using the real-time polymerase chain reaction technique. Based on the results, nanoliposomes had a size of 91 ± 10 nm with a polydispersity index of 0.13. Free curcumin, the extract, and the curcumin-extract combination showed dose-dependent toxicity against cancer cells; yet, the extract (IC50: 86 µg/ml) and curcumin-extract (IC50: 65 µg/ml) activities were much more than curcumin (IC50: 121 µg/ml). Also, the curcumin and extract loaded on liposomes showed a dose and time-dependent cytotoxicity. After loading the curcumin-extract compound on nanoliposomes, their IC50 decreased from 180 µg/ml (within 24 hr) to 43 µg/ml (within 72 hr), indicating their sustainable release and activity. Likewise, this compound induced the highest apoptosis percentage (95%) in cancerous cells and inhibited the expression of the EGFR gene in the cells by 81% ± 3%. These findings demonstrated the effectiveness of the Bilhar extract against oral cancer cells. Also, in combination with curcumin, it showed an additive activity that considerably improved after loading on nanoliposomes.","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"36 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoliposomal Coencapsulation of Dorema aucheri Extract and Curcumin; Enhanced Cytotoxicity, Apoptosis Induction, and Inhibition of EGFR Gene Expression in Oral Cancer Cells OCC-02\",\"authors\":\"Mahshid Azizi, Ghasem Ghalamfarsa, Fatemeh Khosravani, Hassan Bardania, Shahriar Azizi\",\"doi\":\"10.1049/2023/1745877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Curcumin is one of the natural anticancer drugs but its efficiency is limited by low stability, insufficient bioavailability, poor solubility, and poor permeability. Dorema aucheri (Bilhar) is a herb with precious pharmaceutical properties. This study aimed to develop a nanoliposome-based curcumin and Bilhar extract codelivery system. The nanocompounds were synthesized using the lipid thin-film hydration method and characterized by transmission electron microscopy, and dynamic light scattering techniques, and their cytotoxicity and apoptotic effect on the primary oral cancer cell line were evaluated via 2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry. Moreover, the expression of the epidermal growth factor receptor (EGFR) gene in the treated cells was assessed using the real-time polymerase chain reaction technique. Based on the results, nanoliposomes had a size of 91 ± 10 nm with a polydispersity index of 0.13. Free curcumin, the extract, and the curcumin-extract combination showed dose-dependent toxicity against cancer cells; yet, the extract (IC50: 86 µg/ml) and curcumin-extract (IC50: 65 µg/ml) activities were much more than curcumin (IC50: 121 µg/ml). Also, the curcumin and extract loaded on liposomes showed a dose and time-dependent cytotoxicity. After loading the curcumin-extract compound on nanoliposomes, their IC50 decreased from 180 µg/ml (within 24 hr) to 43 µg/ml (within 72 hr), indicating their sustainable release and activity. Likewise, this compound induced the highest apoptosis percentage (95%) in cancerous cells and inhibited the expression of the EGFR gene in the cells by 81% ± 3%. These findings demonstrated the effectiveness of the Bilhar extract against oral cancer cells. Also, in combination with curcumin, it showed an additive activity that considerably improved after loading on nanoliposomes.\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/1745877\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/1745877","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Nanoliposomal Coencapsulation of Dorema aucheri Extract and Curcumin; Enhanced Cytotoxicity, Apoptosis Induction, and Inhibition of EGFR Gene Expression in Oral Cancer Cells OCC-02
Curcumin is one of the natural anticancer drugs but its efficiency is limited by low stability, insufficient bioavailability, poor solubility, and poor permeability. Dorema aucheri (Bilhar) is a herb with precious pharmaceutical properties. This study aimed to develop a nanoliposome-based curcumin and Bilhar extract codelivery system. The nanocompounds were synthesized using the lipid thin-film hydration method and characterized by transmission electron microscopy, and dynamic light scattering techniques, and their cytotoxicity and apoptotic effect on the primary oral cancer cell line were evaluated via 2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry. Moreover, the expression of the epidermal growth factor receptor (EGFR) gene in the treated cells was assessed using the real-time polymerase chain reaction technique. Based on the results, nanoliposomes had a size of 91 ± 10 nm with a polydispersity index of 0.13. Free curcumin, the extract, and the curcumin-extract combination showed dose-dependent toxicity against cancer cells; yet, the extract (IC50: 86 µg/ml) and curcumin-extract (IC50: 65 µg/ml) activities were much more than curcumin (IC50: 121 µg/ml). Also, the curcumin and extract loaded on liposomes showed a dose and time-dependent cytotoxicity. After loading the curcumin-extract compound on nanoliposomes, their IC50 decreased from 180 µg/ml (within 24 hr) to 43 µg/ml (within 72 hr), indicating their sustainable release and activity. Likewise, this compound induced the highest apoptosis percentage (95%) in cancerous cells and inhibited the expression of the EGFR gene in the cells by 81% ± 3%. These findings demonstrated the effectiveness of the Bilhar extract against oral cancer cells. Also, in combination with curcumin, it showed an additive activity that considerably improved after loading on nanoliposomes.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf