茶树油纳米乳紫草素对白色念珠菌和金黄色葡萄球菌的抑菌和抗菌作用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-01 Epub Date: 2023-11-26 DOI:10.1080/08927014.2023.2281511
Kirandeep Kaur, Atamjit Singh, Aditi Monga, Pallvi Mohana, Neha Khosla, Neena Bedi
{"title":"茶树油纳米乳紫草素对白色念珠菌和金黄色葡萄球菌的抑菌和抗菌作用。","authors":"Kirandeep Kaur, Atamjit Singh, Aditi Monga, Pallvi Mohana, Neha Khosla, Neena Bedi","doi":"10.1080/08927014.2023.2281511","DOIUrl":null,"url":null,"abstract":"<p><p>The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by <i>Candida albicans</i> and methicillin resistant <i>Staphylococcus aureus</i> (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of <i>Candida albicans</i> and <i>Staphylococcus aureus.</i></p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial and antibiofilm effects of shikonin with tea tree oil nanoemulsion against <i>Candida albicans</i> and <i>Staphylococcus aureus</i>.\",\"authors\":\"Kirandeep Kaur, Atamjit Singh, Aditi Monga, Pallvi Mohana, Neha Khosla, Neena Bedi\",\"doi\":\"10.1080/08927014.2023.2281511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by <i>Candida albicans</i> and methicillin resistant <i>Staphylococcus aureus</i> (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of <i>Candida albicans</i> and <i>Staphylococcus aureus.</i></p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2281511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2281511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了解决紫草素水溶性差和光稳定性差的问题,本研究旨在开发一种由GRAS级表面活性剂(Tween 20和单油素)和助表面活性剂(Transcutol P)混合稳定的负载紫草素和茶树油的纳米乳液体系。采用核磁共振(NMR)技术对本研究所用紫草素的真伪进行了验证。优化后的纳米乳液在zeta电位(-23.8 mV)、多分散性指数(0.216)和粒径(22.97 nm)方面均表现出良好的性能。透射电子显微镜(TEM)证实了这些发现,证实了纳米乳液球的球形和均匀性。此外,衰减全反射(ATR)和x射线衍射(XRD)分析分别证实了化学稳定性和非晶化的改善。采用紫外灯将纯化的紫草素和制备的纳米乳暴露在紫外光下1 h,进行光降解研究,然后进行高效液相色谱(HPLC)分析。结果表明,所制备的纳米乳体系对紫草素具有光保护作用。此外,研究了纳米乳对白色念珠菌和耐甲氧西林金黄色葡萄球菌(MRSA)形成的生物膜的影响。扫描电子显微镜、荧光显微镜和相衬显微镜显示,被测微生物的生物膜面积显著减少,并伴有细胞壁破坏和细胞表面异常。综上所述,与纯紫草素相比,以茶树油为脂质相的紫草素纳米胶囊对白色念珠菌和金黄色葡萄球菌耐药菌株的抗菌和抗生物膜潜力显著增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antimicrobial and antibiofilm effects of shikonin with tea tree oil nanoemulsion against Candida albicans and Staphylococcus aureus.

The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1