动态静息状态功能脑网络的时变分析揭示记忆功能

Tahmineh Azizi
{"title":"动态静息状态功能脑网络的时变分析揭示记忆功能","authors":"Tahmineh Azizi","doi":"10.1016/j.neuri.2023.100148","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in brain network analysis are largely based on graph theory methods to assess brain network organization, function, and malfunction. Although, functional magnetic resonance imaging (fMRI) has been frequently used to study brain activity, however, the nonlinear dynamics in resting-state (fMRI) data have not been extensively characterized. In this work, we aim to model the dynamics of resting-state (fMRI) and characterize the dynamical patterns in resting-state (fMRI) time series data in left and right hippocampus and inferior frontal gyrus. We use Sliding Window Embedding (SWE) method to reconstruct the phase space of resting-state (fMRI) data from left and right hippocampus and orbital part of inferior frontal gyrus. The complexity of resting-state MRI data is examined using fractal analysis. The main purpose of the current study is to explore the topological organization of hippocampus and frontal gyrus and consequently, memory. By constructing resting-state functional network from resting-state (fMRI) time series data, we are able to draw a big picture of how brain functions and step forward to classify brain activity between normal control people and patients with different brain disorders.</p></div>","PeriodicalId":74295,"journal":{"name":"Neuroscience informatics","volume":"4 1","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277252862300033X/pdfft?md5=d8b0ad8db6ddb45dbac72bc0ec38c3e7&pid=1-s2.0-S277252862300033X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time varying analysis of dynamic resting-state functional brain network to unfold memory function\",\"authors\":\"Tahmineh Azizi\",\"doi\":\"10.1016/j.neuri.2023.100148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advances in brain network analysis are largely based on graph theory methods to assess brain network organization, function, and malfunction. Although, functional magnetic resonance imaging (fMRI) has been frequently used to study brain activity, however, the nonlinear dynamics in resting-state (fMRI) data have not been extensively characterized. In this work, we aim to model the dynamics of resting-state (fMRI) and characterize the dynamical patterns in resting-state (fMRI) time series data in left and right hippocampus and inferior frontal gyrus. We use Sliding Window Embedding (SWE) method to reconstruct the phase space of resting-state (fMRI) data from left and right hippocampus and orbital part of inferior frontal gyrus. The complexity of resting-state MRI data is examined using fractal analysis. The main purpose of the current study is to explore the topological organization of hippocampus and frontal gyrus and consequently, memory. By constructing resting-state functional network from resting-state (fMRI) time series data, we are able to draw a big picture of how brain functions and step forward to classify brain activity between normal control people and patients with different brain disorders.</p></div>\",\"PeriodicalId\":74295,\"journal\":{\"name\":\"Neuroscience informatics\",\"volume\":\"4 1\",\"pages\":\"Article 100148\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277252862300033X/pdfft?md5=d8b0ad8db6ddb45dbac72bc0ec38c3e7&pid=1-s2.0-S277252862300033X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277252862300033X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277252862300033X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑网络分析的最新进展主要基于图论方法来评估脑网络的组织、功能和故障。虽然功能磁共振成像(fMRI)已被广泛用于研究大脑活动,但静息状态下的非线性动力学(fMRI)数据尚未得到广泛的表征。在这项工作中,我们旨在建立静息状态(fMRI)的动力学模型,并表征左、右海马和额下回静息状态(fMRI)时间序列数据的动态模式。采用滑动窗口嵌入(SWE)方法重构了左右海马和额下回眶部静息态(fMRI)数据的相空间。利用分形分析对静息状态MRI数据的复杂性进行了分析。本研究的主要目的是探索海马和额回的拓扑组织,从而探索记忆。通过静息状态(fMRI)时间序列数据构建静息状态功能网络,我们能够描绘出大脑功能的全貌,并进一步对正常对照者和不同脑疾病患者的大脑活动进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Time varying analysis of dynamic resting-state functional brain network to unfold memory function

Recent advances in brain network analysis are largely based on graph theory methods to assess brain network organization, function, and malfunction. Although, functional magnetic resonance imaging (fMRI) has been frequently used to study brain activity, however, the nonlinear dynamics in resting-state (fMRI) data have not been extensively characterized. In this work, we aim to model the dynamics of resting-state (fMRI) and characterize the dynamical patterns in resting-state (fMRI) time series data in left and right hippocampus and inferior frontal gyrus. We use Sliding Window Embedding (SWE) method to reconstruct the phase space of resting-state (fMRI) data from left and right hippocampus and orbital part of inferior frontal gyrus. The complexity of resting-state MRI data is examined using fractal analysis. The main purpose of the current study is to explore the topological organization of hippocampus and frontal gyrus and consequently, memory. By constructing resting-state functional network from resting-state (fMRI) time series data, we are able to draw a big picture of how brain functions and step forward to classify brain activity between normal control people and patients with different brain disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience informatics
Neuroscience informatics Surgery, Radiology and Imaging, Information Systems, Neurology, Artificial Intelligence, Computer Science Applications, Signal Processing, Critical Care and Intensive Care Medicine, Health Informatics, Clinical Neurology, Pathology and Medical Technology
自引率
0.00%
发文量
0
审稿时长
57 days
期刊最新文献
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in neurodegenerative diseases Topic modeling of neuropsychiatric diseases related to gut microbiota and gut brain axis using artificial intelligence based BERTopic model on PubMed abstracts Brain network analysis in Parkinson's disease patients based on graph theory Exploring age-related functional brain changes during audio-visual integration tasks in early to mid-adulthood Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1