{"title":"利用丢失一个或两个分量的矢量观测进行方向估计","authors":"Gang Shi, Honglei Shang","doi":"10.1108/sr-12-2021-0499","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of vector observations unavailable. This paper aims to propose algorithms to realize orientation estimation using vector observations with one or two components lost.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The fundamental of the proposed method is using norm equation and dot product equation to estimate the lost components, then, using an improved TRIAD to calculate attitude matrix. Specific algorithms for one and two lost components cases are constructed respectively, and the nonuniqueness of orientation estimation is analyzed from a geometric point of view. At last, experiments are performed to test the proposed algorithms.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The loss of components results in the loss of orientation information. The introduction of the norm equation and dot product equation can partially compensate for the loss of information. Experiment results and analysis show that the proposed algorithms can provide effective orientation estimation, and in vast majority of applications, the proposed algorithms can provide a unique solution in one lost component case and double solutions in two lost components case.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed method addresses the problem of orientation estimation when one or two components of vector observations are unavailable. The introduction of the norm equation and dot product equation makes the calculation cost low, while the analyses from a geometric point of view makes the study of nonuniqueness more intuitive.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"323 ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation estimation using vector observations with one or two components lost\",\"authors\":\"Gang Shi, Honglei Shang\",\"doi\":\"10.1108/sr-12-2021-0499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of vector observations unavailable. This paper aims to propose algorithms to realize orientation estimation using vector observations with one or two components lost.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The fundamental of the proposed method is using norm equation and dot product equation to estimate the lost components, then, using an improved TRIAD to calculate attitude matrix. Specific algorithms for one and two lost components cases are constructed respectively, and the nonuniqueness of orientation estimation is analyzed from a geometric point of view. At last, experiments are performed to test the proposed algorithms.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The loss of components results in the loss of orientation information. The introduction of the norm equation and dot product equation can partially compensate for the loss of information. Experiment results and analysis show that the proposed algorithms can provide effective orientation estimation, and in vast majority of applications, the proposed algorithms can provide a unique solution in one lost component case and double solutions in two lost components case.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed method addresses the problem of orientation estimation when one or two components of vector observations are unavailable. The introduction of the norm equation and dot product equation makes the calculation cost low, while the analyses from a geometric point of view makes the study of nonuniqueness more intuitive.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49540,\"journal\":{\"name\":\"Sensor Review\",\"volume\":\"323 \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/sr-12-2021-0499\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-12-2021-0499","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Orientation estimation using vector observations with one or two components lost
Purpose
Traditional algorithms require at least two complete vector observations to estimate orientation parameters. However, sensor faults and disturbances may cause some components of vector observations unavailable. This paper aims to propose algorithms to realize orientation estimation using vector observations with one or two components lost.
Design/methodology/approach
The fundamental of the proposed method is using norm equation and dot product equation to estimate the lost components, then, using an improved TRIAD to calculate attitude matrix. Specific algorithms for one and two lost components cases are constructed respectively, and the nonuniqueness of orientation estimation is analyzed from a geometric point of view. At last, experiments are performed to test the proposed algorithms.
Findings
The loss of components results in the loss of orientation information. The introduction of the norm equation and dot product equation can partially compensate for the loss of information. Experiment results and analysis show that the proposed algorithms can provide effective orientation estimation, and in vast majority of applications, the proposed algorithms can provide a unique solution in one lost component case and double solutions in two lost components case.
Originality/value
The proposed method addresses the problem of orientation estimation when one or two components of vector observations are unavailable. The introduction of the norm equation and dot product equation makes the calculation cost low, while the analyses from a geometric point of view makes the study of nonuniqueness more intuitive.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.