Irina Melnikova, Philippe Ciais, Olivier Boucher, Katsumasa Tanaka
{"title":"评估SSP情景下复杂和简单模型的碳循环预测","authors":"Irina Melnikova, Philippe Ciais, Olivier Boucher, Katsumasa Tanaka","doi":"10.1007/s10584-023-03639-5","DOIUrl":null,"url":null,"abstract":"<p>Both full-fledged Earth system models (ESMs) and simple climate models (SCMs) have been used to investigate climate change for future representative CO<sub>2</sub> concentration pathways under the sixth phase of the Coupled Model Intercomparison Project. Here, we explore to what extent complex and simple models are consistent in their carbon cycle response in concentration-driven simulations. Although ESMs and SCMs exhibit similar compatible fossil fuel CO<sub>2</sub> emissions, ESMs systematically estimate a lower ocean carbon uptake than SCMs in the historical period and future scenarios. The ESM and SCM differences are especially large under low-concentration and overshoot scenarios. Furthermore, ESMs and SCMs deviate in their land carbon uptake estimates, but the differences are scenario-dependent. These differences are partly driven by a few model outliers (ESMs and SCMs) and the procedure of observational constraining that is present in the majority of SCMs but not applied in ESMs. The differences in land uptake arise from the difference in the way land-use change (LUC) emissions are calculated and different assumptions on how the carbon cycle feedbacks are defined, possibly reflecting the treatment of nitrogen limitation of biomass growth and historical calibration of SCMs. The differences in ocean uptake, which are especially large in overshoot scenarios, may arise from the faster mixing of carbon from the surface to the deep ocean in SCMs than in ESMs. We also discuss the inconsistencies that arise when converting CO<sub>2</sub> emissions from integrated assessment models (IAMs) to CO<sub>2</sub> concentrations inputs for ESMs, which typically rely on a single SCM. We further highlight the discrepancies in LUC emission estimates between models of different complexity, particularly ESMs and IAMs, and encourage climate modeling groups to address these potential areas for model improvement.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":"362 ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing carbon cycle projections from complex and simple models under SSP scenarios\",\"authors\":\"Irina Melnikova, Philippe Ciais, Olivier Boucher, Katsumasa Tanaka\",\"doi\":\"10.1007/s10584-023-03639-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Both full-fledged Earth system models (ESMs) and simple climate models (SCMs) have been used to investigate climate change for future representative CO<sub>2</sub> concentration pathways under the sixth phase of the Coupled Model Intercomparison Project. Here, we explore to what extent complex and simple models are consistent in their carbon cycle response in concentration-driven simulations. Although ESMs and SCMs exhibit similar compatible fossil fuel CO<sub>2</sub> emissions, ESMs systematically estimate a lower ocean carbon uptake than SCMs in the historical period and future scenarios. The ESM and SCM differences are especially large under low-concentration and overshoot scenarios. Furthermore, ESMs and SCMs deviate in their land carbon uptake estimates, but the differences are scenario-dependent. These differences are partly driven by a few model outliers (ESMs and SCMs) and the procedure of observational constraining that is present in the majority of SCMs but not applied in ESMs. The differences in land uptake arise from the difference in the way land-use change (LUC) emissions are calculated and different assumptions on how the carbon cycle feedbacks are defined, possibly reflecting the treatment of nitrogen limitation of biomass growth and historical calibration of SCMs. The differences in ocean uptake, which are especially large in overshoot scenarios, may arise from the faster mixing of carbon from the surface to the deep ocean in SCMs than in ESMs. We also discuss the inconsistencies that arise when converting CO<sub>2</sub> emissions from integrated assessment models (IAMs) to CO<sub>2</sub> concentrations inputs for ESMs, which typically rely on a single SCM. We further highlight the discrepancies in LUC emission estimates between models of different complexity, particularly ESMs and IAMs, and encourage climate modeling groups to address these potential areas for model improvement.</p>\",\"PeriodicalId\":10372,\"journal\":{\"name\":\"Climatic Change\",\"volume\":\"362 \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climatic Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10584-023-03639-5\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-023-03639-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessing carbon cycle projections from complex and simple models under SSP scenarios
Both full-fledged Earth system models (ESMs) and simple climate models (SCMs) have been used to investigate climate change for future representative CO2 concentration pathways under the sixth phase of the Coupled Model Intercomparison Project. Here, we explore to what extent complex and simple models are consistent in their carbon cycle response in concentration-driven simulations. Although ESMs and SCMs exhibit similar compatible fossil fuel CO2 emissions, ESMs systematically estimate a lower ocean carbon uptake than SCMs in the historical period and future scenarios. The ESM and SCM differences are especially large under low-concentration and overshoot scenarios. Furthermore, ESMs and SCMs deviate in their land carbon uptake estimates, but the differences are scenario-dependent. These differences are partly driven by a few model outliers (ESMs and SCMs) and the procedure of observational constraining that is present in the majority of SCMs but not applied in ESMs. The differences in land uptake arise from the difference in the way land-use change (LUC) emissions are calculated and different assumptions on how the carbon cycle feedbacks are defined, possibly reflecting the treatment of nitrogen limitation of biomass growth and historical calibration of SCMs. The differences in ocean uptake, which are especially large in overshoot scenarios, may arise from the faster mixing of carbon from the surface to the deep ocean in SCMs than in ESMs. We also discuss the inconsistencies that arise when converting CO2 emissions from integrated assessment models (IAMs) to CO2 concentrations inputs for ESMs, which typically rely on a single SCM. We further highlight the discrepancies in LUC emission estimates between models of different complexity, particularly ESMs and IAMs, and encourage climate modeling groups to address these potential areas for model improvement.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.