Lucas Berio Fortini, Lauren R. Kaiser, Abby G. Frazier, Thomas W. Giambelluca
{"title":"检验气候影响研究中常用的全球缩小尺度气候预估的当前偏差和未来预估一致性","authors":"Lucas Berio Fortini, Lauren R. Kaiser, Abby G. Frazier, Thomas W. Giambelluca","doi":"10.1007/s10584-023-03623-z","DOIUrl":null,"url":null,"abstract":"<p>The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature.</p>","PeriodicalId":10372,"journal":{"name":"Climatic Change","volume":"399 ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies\",\"authors\":\"Lucas Berio Fortini, Lauren R. Kaiser, Abby G. Frazier, Thomas W. Giambelluca\",\"doi\":\"10.1007/s10584-023-03623-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature.</p>\",\"PeriodicalId\":10372,\"journal\":{\"name\":\"Climatic Change\",\"volume\":\"399 \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climatic Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10584-023-03623-z\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climatic Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10584-023-03623-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Examining current bias and future projection consistency of globally downscaled climate projections commonly used in climate impact studies
The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature.
期刊介绍:
Climatic Change is dedicated to the totality of the problem of climatic variability and change - its descriptions, causes, implications and interactions among these. The purpose of the journal is to provide a means of exchange among those working in different disciplines on problems related to climatic variations. This means that authors have an opportunity to communicate the essence of their studies to people in other climate-related disciplines and to interested non-disciplinarians, as well as to report on research in which the originality is in the combinations of (not necessarily original) work from several disciplines. The journal also includes vigorous editorial and book review sections.