{"title":"Procrustes的形状不能一次分析、解释或可视化一个地标","authors":"Andrea Cardini, Verderame Adolfo Marco","doi":"10.1007/s11692-022-09565-1","DOIUrl":null,"url":null,"abstract":"<p>Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.</p>","PeriodicalId":50471,"journal":{"name":"Evolutionary Biology","volume":"12 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Procrustes Shape Cannot be Analyzed, Interpreted or Visualized one Landmark at a Time\",\"authors\":\"Andrea Cardini, Verderame Adolfo Marco\",\"doi\":\"10.1007/s11692-022-09565-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.</p>\",\"PeriodicalId\":50471,\"journal\":{\"name\":\"Evolutionary Biology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11692-022-09565-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11692-022-09565-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Procrustes Shape Cannot be Analyzed, Interpreted or Visualized one Landmark at a Time
Landmark-based geometric morphometrics using the Procrustes approach has become the dominant family of methods in morphometrics. However, the superimposition (and sliding, if semilandmarks are present), that transforms raw coordinates into shape coordinates is biologically arbitrary. Procrustes has desirable statistical properties, but is not based on a biological model. The same is true for sliding methods. These techniques allow powerful statistical analyses of a full set of shape coordinates, but make the use of subsets of landmarks/semilandmarks problematic, inaccurate and misleading, if not totally wrong. Crucially, the biological arbitrariness of the superimposition prevents any meaningful quantification, analysis and interpretation of variation one landmark/semilandmark at a time. We exemplify how misleading this type of analyses can be by using a real dataset, as well as simulated data with isotropic variation. Both show inconsistencies in ‘per-landmark/semilandmark’ variances. The simulation in fact helps to make even more obvious that the pattern of variance is strongly influenced by the biologically arbitrary choice of the mathematical treatment. Unfortunately, despite this limitation of all superimposition methods being known since the early days of Procrustean morphometrics, there has been a recent series of papers in leading journals presenting results of ‘per-landmark’ analyses. Thus, we further clarify why these analyses are wrong and represent misleading examples that should not be followed: Procrustes shape data cannot be analyzed, visualized or interpreted one landmark at a time. For users who are in doubt, in the Conclusions, we provide a short list of recommendations on how to easily avoid this type of mistakes.
期刊介绍:
The aim, scope, and format of Evolutionary Biology will be based on the following principles:
Evolutionary Biology will publish original articles and reviews that address issues and subjects of core concern in evolutionary biology. All papers must make original contributions to our understanding of the evolutionary process.
The journal will remain true to the original intent of the original series to provide a place for broad syntheses in evolutionary biology. Articles will contribute to this goal by defining the direction of current and future research and by building conceptual links between disciplines. In articles presenting an empirical analysis, the results of these analyses must be integrated within a broader evolutionary framework.
Authors are encouraged to submit papers presenting novel conceptual frameworks or major challenges to accepted ideas.
While brevity is encouraged, there is no formal restriction on length for major articles.
The journal aims to keep the time between original submission and appearance online to within four months and will encourage authors to revise rapidly once a paper has been submitted and deemed acceptable.