用于高性能钠离子半/全电池的 MoSe2 纳米片卷空心纳米球的层间工程和电子调控

Jun Xu , Junbao Jiang , Heng Tang , Zhao Chen , Junwei Chen , Yan Zhang , Chun-Sing Lee
{"title":"用于高性能钠离子半/全电池的 MoSe2 纳米片卷空心纳米球的层间工程和电子调控","authors":"Jun Xu ,&nbsp;Junbao Jiang ,&nbsp;Heng Tang ,&nbsp;Zhao Chen ,&nbsp;Junwei Chen ,&nbsp;Yan Zhang ,&nbsp;Chun-Sing Lee","doi":"10.1016/j.apmate.2023.100169","DOIUrl":null,"url":null,"abstract":"<div><p>Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport, which restricts their high-rate capability and cycling stability. In this work, rGO@MoSe<sub>2</sub>/<span>NAC</span> hierarchical architectures, consisting of conductive reduced graphene oxide (rGO) supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe<sub>2</sub> and N-doped amorphous carbon (<span>NAC</span>) monolayers, are synthesized as a high-performance sodium storage anode. Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe<sub>2</sub> monolayers improving electronic conductivity of MoSe<sub>2</sub> in both surface and internal bulk to fully accelerate electron transport and enhance Na<sup>+</sup> ​adsorption. The interoverlapped MoSe<sub>2</sub>/NAC superlattice featuring a wide interlayer expansion (72.3 ​%) of MoSe<sub>2</sub> dramatically decreases Na<sup>+</sup> ​diffusion barriers for fast insertion/extraction. Moreover, the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion, thereby enabling outstanding structural stability. Consequently, the rGO@MoSe<sub>2</sub>/NAC anode exhibits excellent high-rate capability of 194 mAh g<sup>−1</sup> and ultralong cyclability of 12 ​000 cycles with a low capacity fading rate of 0.0038 ​% per cycle at an ultra-high current of 50 ​A ​g<sup>−1</sup>, delivering the best high-rate cycling performance to date. Remarkably, the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>‖rGO@MoSe<sub>2</sub>/NAC full cells also present outstanding cycling stability (600 cycles) at 10C rate, which proves the great potential in fast-charging applications.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X23000611/pdfft?md5=0b9d0f934e2663c29f025494c24ca431&pid=1-s2.0-S2772834X23000611-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Interlayer engineering and electronic regulation of MoSe2 nanosheets rolled hollow nanospheres for high-performance sodium-ion half/full batteries\",\"authors\":\"Jun Xu ,&nbsp;Junbao Jiang ,&nbsp;Heng Tang ,&nbsp;Zhao Chen ,&nbsp;Junwei Chen ,&nbsp;Yan Zhang ,&nbsp;Chun-Sing Lee\",\"doi\":\"10.1016/j.apmate.2023.100169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport, which restricts their high-rate capability and cycling stability. In this work, rGO@MoSe<sub>2</sub>/<span>NAC</span> hierarchical architectures, consisting of conductive reduced graphene oxide (rGO) supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe<sub>2</sub> and N-doped amorphous carbon (<span>NAC</span>) monolayers, are synthesized as a high-performance sodium storage anode. Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe<sub>2</sub> monolayers improving electronic conductivity of MoSe<sub>2</sub> in both surface and internal bulk to fully accelerate electron transport and enhance Na<sup>+</sup> ​adsorption. The interoverlapped MoSe<sub>2</sub>/NAC superlattice featuring a wide interlayer expansion (72.3 ​%) of MoSe<sub>2</sub> dramatically decreases Na<sup>+</sup> ​diffusion barriers for fast insertion/extraction. Moreover, the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion, thereby enabling outstanding structural stability. Consequently, the rGO@MoSe<sub>2</sub>/NAC anode exhibits excellent high-rate capability of 194 mAh g<sup>−1</sup> and ultralong cyclability of 12 ​000 cycles with a low capacity fading rate of 0.0038 ​% per cycle at an ultra-high current of 50 ​A ​g<sup>−1</sup>, delivering the best high-rate cycling performance to date. Remarkably, the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>‖rGO@MoSe<sub>2</sub>/NAC full cells also present outstanding cycling stability (600 cycles) at 10C rate, which proves the great potential in fast-charging applications.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000611/pdfft?md5=0b9d0f934e2663c29f025494c24ca431&pid=1-s2.0-S2772834X23000611-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X23000611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层状过渡金属二钙化物是钠存储的理想候选材料,但其内在电子导电性较低,用于快速电子/离子传输的层间间距有限,这限制了其高速率能力和循环稳定性。在这项研究中,我们合成了 rGO@MoSe2/NAC 分层结构,这种结构由导电的还原氧化石墨烯(rGO)组成,由交替重叠的 MoSe2 和 N 掺杂的无定形碳(NAC)单层超晶格轧制而成的空心纳米球支撑,可作为高性能的钠存储阳极。理论计算显示,在两个相邻的 MoSe2 单层之间夹杂的 NAC 单层提高了 MoSe2 在表面和内部的电子传导性,从而充分加速了电子传输并增强了对 Na+ 的吸附。交叠的 MoSe2/NAC 超晶格具有较宽的 MoSe2 层间膨胀率(72.3%),可显著降低 Na+ 扩散障碍,从而实现快速插入/萃取。此外,中空纳米球和 rGO 导电网络有助于形成一个坚固的纤维结构,可以很好地释放内应力并缓冲体积膨胀,从而实现出色的结构稳定性。因此,rGO@MoSe2/NAC 阳极表现出 194 mAh g-1 的卓越高速率能力和 12 000 次的超长循环能力,在 50 A g-1 的超高电流下,每次循环的容量衰减率仅为 0.0038%,实现了迄今为止最佳的高速率循环性能。值得注意的是,Na3V2(PO4)3‖rGO@MoSe2/NAC 全电池在 10C 速率下也具有出色的循环稳定性(600 次循环),这证明了其在快速充电应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interlayer engineering and electronic regulation of MoSe2 nanosheets rolled hollow nanospheres for high-performance sodium-ion half/full batteries

Layered transition metal dichalcogenides are promising candidates for sodium storage but suffering from low intrinsic electronic conductivity and limited interlayer spacing for fast electron/ion transport, which restricts their high-rate capability and cycling stability. In this work, rGO@MoSe2/NAC hierarchical architectures, consisting of conductive reduced graphene oxide (rGO) supported by hollow nanospheres that are rolled from superlattices of alternatively overlapped MoSe2 and N-doped amorphous carbon (NAC) monolayers, are synthesized as a high-performance sodium storage anode. Theoretical calculations reveal the intercalation of NAC monolayer between two adjacent MoSe2 monolayers improving electronic conductivity of MoSe2 in both surface and internal bulk to fully accelerate electron transport and enhance Na+ ​adsorption. The interoverlapped MoSe2/NAC superlattice featuring a wide interlayer expansion (72.3 ​%) of MoSe2 dramatically decreases Na+ ​diffusion barriers for fast insertion/extraction. Moreover, the hollow nanospheres and the rGO conductive network contribute to a robust hiberarchy that can well release internal stress and buffer the volume expansion, thereby enabling outstanding structural stability. Consequently, the rGO@MoSe2/NAC anode exhibits excellent high-rate capability of 194 mAh g−1 and ultralong cyclability of 12 ​000 cycles with a low capacity fading rate of 0.0038 ​% per cycle at an ultra-high current of 50 ​A ​g−1, delivering the best high-rate cycling performance to date. Remarkably, the Na3V2(PO4)3‖rGO@MoSe2/NAC full cells also present outstanding cycling stability (600 cycles) at 10C rate, which proves the great potential in fast-charging applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1